當前位置:首頁 » 網路連接 » 深度卷積網路

深度卷積網路

發布時間: 2021-02-14 15:37:11

㈠ 深度卷積神經網路 能實現數據分類嗎

當然抄可以,CNN最初就是用來識別手寫的郵編數字,也就是識別一個手寫阿拉伯數字是0~9中的哪一個,實際上就是一個十分類問題。
Demo參見:http://yann.lecun.com/exdb/lenet/

㈡ 深度學習中的卷積網路到底怎麼回事

這兩個概念實際上是互相交叉的,例如,卷積神經網路(Convolutionalneuralnetworks,簡稱CNNs)就是內一種深度的監督學習下的容機器學習模型,而深度置信網(DeepBeliefNets,簡稱DBNs)就是一種無監督學習下的機器學習模型。深度學習的概念源於人工神經網路的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現數據的分布式特徵表示。深度學習的概念由Hinton等人於2006年提出。基於深信度網(DBN)提出非監督貪心逐層訓練演算法,為解決深層結構相關的優化難題帶來希望,隨後提出多層自動編碼器深層結構。此外Lecun等人提出的卷積神經網路是第一個真正多層結構學習演算法,它利用空間相對關系減少參數數目以提高訓練性能。

㈢ 卷積神經網路和深度神經網路的區別是什麼

沒有卷積神經網路的說法,只有卷積核的說法。
電腦圖像處理的真正價值在於:一旦圖像存儲在電腦上,就可以對圖像進行各種有效的處理。如減小像素的顏色值,可以解決曝光過度的問題,模糊的圖像也可以進行銳化處理,清晰的圖像可以使用模糊處理模擬攝像機濾色鏡產生的柔和效果。
用Photoshop等圖像處理軟體,施展的魔法幾乎是無止境的。四種基本圖像處理效果是模糊、銳化、浮雕和水彩。ß這些效果是不難實現的,它們的奧妙部分是一個稱為卷積核的小矩陣。這個3*3的核含有九個系數。為了變換圖像中的一個像素,首先用卷積核中心的系數乘以這個像素值,再用卷積核中其它八個系數分別乘以像素周圍的八個像素,最後把這九個乘積相加,結果作為這個像素的值。對圖像中的每個像素都重復這一過程,對圖像進行了過濾。採用不同的卷積核,就可以得到不同的處理效果。ß用PhotoshopCS6,可以很方便地對圖像進行處理。
模糊處理——模糊的卷積核由一組系數構成,每個系數都小於1,但它們的和恰好等於1,每個像素都吸收了周圍像素的顏色,每個像素的顏色分散給了它周圍的像素,最後得到的圖像中,一些刺目的邊緣變得柔和。
銳化卷積核中心的系數大於1,周圍八個系數和的絕對值比中間系數小1,這將擴大一個像素與之周圍像素顏色之間的差異,最後得到的圖像比原來的圖像更清晰。
浮雕卷積核中的系數累加和等於零,背景像素的值為零,非背景像素的值為非零值。照片上的圖案好像金屬表面的浮雕一樣,輪廓似乎凸出於其表面。
要進行水彩處理,首先要對圖像中的色彩進行平滑處理,把每個像素的顏色值和它周圍的二十四個相鄰的像素顏色值放在一個表中,然後由小到大排序,把表中間的一個顏色值作為這個像素的顏色值。然後用銳化卷積核對圖像中的每個像素進行處理,以使得輪廓更加突出,最後得到的圖像很像一幅水彩畫。
我們把一些圖像處理技術結合起來使用,就能產生一些不常見的光學效果,例如光暈等等。
希望我能幫助你解疑釋惑。

㈣ 卷積神經網路和深度神經網路的區別是什麼

卷積」和「深度」是神經網路互相獨立的兩個性質。「卷積」指的是前端有卷積層;「深度」指的是網路有很多層(理論上講,有兩個隱藏層就可以叫「深度」了)。

㈤ 深度殘差網路是卷積網路的一種嗎

是的,深度殘差網路在傳統的卷積神經網路上加入了殘差模塊,
再看看別人怎麼說的。

㈥ 深度卷積神經網路必須用gpu加速么

不一定,但gpu往往比cpu快數十倍。
cpu速度也是非常快的,根據cpu核心數適當開多線程可以成倍提升速度。
望採納

㈦ 如何更好的理解分析深度卷積神經網路

  • 用局部連接而不是全連接,同時權值共享。

局部連接的概念參考局部感受域,即某個視神經元僅考慮某一個小區域的視覺輸入,因此相比普通神經網路的全連接層(下一層的某一個神經元需要與前一層的所有節點連接),卷積網路的某一個卷積層的所有節點只負責前層輸入的某一個區域(比如某個3*3的方塊)。這樣一來需要訓練的權值數相比全連接而言會大大減少,進而減小對樣本空間大小的需求。

權值共享的概念就是,某一隱藏層的所有神經元共用一組權值。

這兩個概念對應卷積層的話,恰好就是某個固定的卷積核。卷積核在圖像上滑動時每處在一個位置分別對應一個「局部連接」的神經元,同時因為「權值共享」的緣故,這些神經元的參數一致,正好對應同一個卷積核。

順便補充下,不同卷積核對應不同的特徵,比如不同方向的邊(edge)就會分別對應不同的卷積核。

  • 激活函數f(x)用ReLU的話避免了x過大梯度趨於0(比如用sigmoid)而影響訓練的權值的情況(即GradientVanishing)。同時結果會更稀疏一些。

  • 池化之後(例如保留鄰域內最大或採納平均以舍棄一些信息)一定程度也壓制了過擬合的情況。

綜述

總體來說就是重復卷積-relu來提取特徵,進行池化之後再作更深層的特徵提取,實質上深層卷積網路的主要作用在於特徵提取。最後一層直接用softmax來分類(獲得一個介於0~1的值表達輸入屬於這一類別的概率)。

㈧ 影響深度卷積神經網路演算法的關鍵參數是().

卷積核個數filters 卷積核尺寸kernel_size 步長striders 填充方式padding 卷積核激活方式activation 卷積核權重參數初始分布 卷積核偏置參數初始分布
池化尺寸 池化步長 池化方式
優化演算法 目標函數 batch大小
正則化 數據預處理

能影響的參數太多

㈨ 深度卷積神經網路 為什麼每次epoch 提高准確率

練習題做了一遍沒印象,那就再做幾遍

熱點內容
網卡了的原因 發布:2021-03-16 21:18:20 瀏覽:602
聯通客服工作怎麼樣 發布:2021-03-16 21:17:49 瀏覽:218
路由器畫圖 發布:2021-03-16 21:17:21 瀏覽:403
大網卡收費 發布:2021-03-16 21:16:50 瀏覽:113
路由器免費送 發布:2021-03-16 21:16:19 瀏覽:985
孝昌營業廳 發布:2021-03-16 21:15:54 瀏覽:861
網速增速代碼 發布:2021-03-16 21:15:29 瀏覽:194
怎麼黑光纖 發布:2021-03-16 21:14:54 瀏覽:901
埠增大 發布:2021-03-16 21:14:20 瀏覽:709
開機沒信號是什麼原因 發布:2021-03-16 21:13:45 瀏覽:645