貝葉斯網路應用實例
A. 貝葉斯網路模型具體作用,舉個列子說明
貝葉斯網路模型最簡單的例子是「分類器」,即在觀測節點輸入多個特徵,內就能獲得這些特徵所容對應的具體事物。
例如:一個箱子里裝有籃球,排球和足球,你的朋友每次從箱子里取出某一個球。但你看不見所取球的類型,只能通過朋友描述尺寸,外表,顏色等特徵(觀測數據)來辨別(分類),當然你之所以具備辨別(分類)能力是你長期對幾種球類的觀察和認識,並將這些特徵一一儲存在你腦部,這就形成先驗知識以及特徵與具體事物的對應關系(網路模型結構和參數)。如果模型和先驗知識精確,你的朋友僅需要說出尺寸或者顏色你就立刻可以分類,如果模型或先驗知識不精確,那朋友就需要多說出幾個特徵你才能辨別。
通過上面的例子發現,貝葉斯網路需要學習,即通過數據進行訓練,在具有觀測數據時需要推理。這里就包含了BN的核心研究內容。我就不一一介紹,目前全國大約有1200多篇文章都是BN的相關工作進展,看看就知道了。
B. 如何利用貪心法構建貝葉斯網路代碼
基於matlab的貝葉斯網路工具箱BNT是kevin p.murphy基於matlab語言開發的關於貝葉斯網路學習的開源軟體包,提供了許多貝葉斯網路學習的底層基礎函數庫,支持多種類型的節點(概率分布)、精確推理和近似推理、參數學習及結構學習、靜態模型和動態模型。
貝葉斯網路表示:BNT中使用矩陣方式表示貝葉斯網路,即若節點i到j有一條弧,則對應矩陣中(i,j)值為1,否則為0。
結構學習演算法函數:BNT中提供了較為豐富的結構學習函數,都有:
1. 學習樹擴展貝葉斯網路結構的TANC演算法learn_struct_tan().
2. 數據完整條件下學習一般貝葉斯網路結構的K2演算法learn_struct_k2()、貪婪搜索GS(greedy search)演算法learn_struct_gs()和爬山HC(hill climbing)演算法learn_struct_hc()等。
3. 缺失數據條件下學習一般貝葉斯網路結構的最大期望EM(expectation maximization)演算法learn_struct_EM()和馬爾科夫鏈蒙特卡羅MCMC(Markov Chain Monte Carlo)learn_struct_mcmc()演算法等。
參數學習演算法函數:BNT中也提供了豐富的參數學習函數,都有:
1. 完整數據時,學習參數的方法主要有兩種:最大似然估計learn_params()和貝葉斯方法bayes_update_params();
2. 數據缺失時,如果已知網路拓撲結構,用EM演算法來計算參數,倘若未知網路拓撲結構,使用結構最大期望SEM(structure EM)演算法learn_struct_SEM()。
推理機制及推理引擎:為了提高運算速度,使各種推理演算法能夠有效應用,BNT工具箱採用了引擎機制,不同的引擎根據不同的演算法來完成模型轉換、細化和求解。這個推理過程如下:
BNT中提供了多種推理引擎,都有:
1. 聯合樹推理引擎jtree_inf_engine();
2. 全局聯合樹推理引擎global_joint_inf_engine();
3. 信念傳播推理引擎 belprop_inf_engine();
4. 變數消元推理引擎 var_elim_inf_engine().
C. 動態貝葉斯網路推理學習理論及應用的內容簡介
動態貝葉斯網路理論是貝葉斯網路理論的延拓,研究內容涉及推理和學習兩大方內面,該理論在人工智容能、機器學習、自動控制領域得到越來越廣泛的應用。本書首先從靜態網路的模型表達、推理及學習入手,進而針對動態貝葉斯網路推理演算法、平穩系統動態貝葉斯網路結構學習模型設計、非平穩系統動態網路變結構學習模型設計、基於概率模型進化優化動態貝葉斯網路結構尋優演算法、進化優化與動態貝葉斯網路混和優化等方面進行了討論,最終將推理及結構學習理論用於無人機路徑規劃、自主控制等方面。
D. 貝葉斯網路的特性
1、貝葉斯網路本身是一種不定性因果關聯模型。貝葉斯網路與其他決策模型不同,它本身是將多元知識圖解可視化的一種概率知識表達與推理模型,更為貼切地蘊含了網路節點變數之間的因果關系及條件相關關系。
2、貝葉斯網路具有強大的不確定性問題處理能力。貝葉斯網路用條件概率表達各個信息要素之間的相關關系,能在有限的、不完整的、不確定的信息條件下進行學習和推理。
3、貝葉斯網路能有效地進行多源信息表達與融合。貝葉斯網路可將故障診斷與維修決策相關的各種信息納入網路結構中,按節點的方式統一進行處理,能有效地按信息的相關關系進行融合。
對於貝葉斯網路推理研究中提出了多種近似推理演算法,主要分為兩大類:基於模擬方法和基於搜索的方法。在故障診斷領域里就我們水電模擬而言,往往故障概率很小,所以一般採用搜索推理演算法較適合。就一個實例而言,首先要分析使用哪種演算法模型:
a.)如果該實例節點信度網路是簡單的有向圖結構,它的節點數目少的情況下,採用貝葉斯網路的精確推理,它包含多樹傳播演算法,團樹傳播演算法,圖約減演算法,針對實例事件進行選擇恰當的演算法;
b.)如果是該實例所畫出節點圖形結構復雜且節點數目多,我們可採用近似推理演算法去研究,具體實施起來最好能把復雜龐大的網路進行化簡,然後在與精確推理相結合來考慮。
在日常生活中,人們往往進行常識推理,而這種推理通常是不準確的。例如,你看見一個頭發潮濕的人走進來,你認為外面下雨了,那你也許錯了;如果你在公園里看到一男一女帶著一個小孩,你認為他們是一家人,你可能也犯了錯誤。在工程中,我們也同樣需要進行科學合理的推理。但是,工程實際中的問題一般都比較復雜,而且存在著許多不確定性因素。這就給准確推理帶來了很大的困難。很早以前,不確定性推理就是人工智慧的一個重要研究領域。盡管許多人工智慧領域的研究人員引入其它非概率原理,但是他們也認為在常識推理的基礎上構建和使用概率方法也是可能的。為了提高推理的准確性,人們引入了概率理論。最早由Judea Pearl於1988年提出的貝葉斯網路(Bayesian Network)實質上就是一種基於概率的不確定性推理網路。它是用來表示變數集合連接概率的圖形模型,提供了一種表示因果信息的方法。當時主要用於處理人工智慧中的不確定性信息。隨後它逐步成為了處理不確定性信息技術的主流,並且在計算機智能科學、工業控制、醫療診斷等領域的許多智能化系統中得到了重要的應用。
貝葉斯理論是處理不確定性信息的重要工具。作為一種基於概率的不確定性推理方法,貝葉斯網路在處理不確定信息的智能化系統中已得到了重要的應用,已成功地用於醫療診斷、統計決策、專家系統、學習預測等領域。這些成功的應用,充分體現了貝葉斯網路技術是一種強有力的不確定性推理方法。
E. 貝葉斯原理及應用
貝葉斯決策理論是主觀貝葉斯派歸納理論的重要組成部分。貝葉斯決策就是在不完全情報下,對部分未知的狀態用主觀概率估計,然後用貝葉斯公式對發生概率進行修正,最後再利用期望值和修正概率做出最優決策。貝葉斯決策理論方法是統計模型決策中的一個基本方法,其基本思想是:1、已知類條件概率密度參數表達式和先驗概率。2、利用貝葉斯公式轉換成後驗概率。3、根據後驗概率大小進行決策分類。他對統計推理的主要貢獻是使用了"逆概率"這個概念,並把它作為一種普遍的推理方法提出來。貝葉斯定理原本是概率論中的一個定理,這一定理可用一個數學公式來表達,這個公式就是著名的貝葉斯公式。 貝葉斯公式是他在1763年提出來的:假定B1,B2,……是某個過程的若干可能的前提,則P(Bi)是人們事先對各前提條件出現可能性大小的估計,稱之為先驗概率。如果這個過程得到了一個結果A,那麼貝葉斯公式提供了我們根據A的出現而對前提條件做出新評價的方法。P(Bi∣A)既是對以A為前提下Bi的出現概率的重新認識,稱 P(Bi∣A)為後驗概率。經過多年的發展與完善,貝葉斯公式以及由此發展起來的一整套理論與方法,已經成為概率統計中的一個冠以「貝葉斯」名字的學派,在自然科學及國民經濟的許多領域中有著廣泛應用。公式:設D1,D2,……,Dn為樣本空間S的一個劃分,如果以P(Di)表示事件Di發生的概率,且P(Di)>0(i=1,2,…,n)。對於任一事件x,P(x)>0,則有: nP(Dj/x)=p(x/Dj)P(Dj)/∑P(X/Di)P(Di)i=1( http://wiki.mbalib.com/w/images/math/9/9/b/.png)貝葉斯預測模型在礦物含量預測中的應用 貝葉斯預測模型在氣溫變化預測中的應用 貝葉斯學習原理及其在預測未來地震危險中的應用 基於稀疏貝葉斯分類器的汽車車型識別 信號估計中的貝葉斯方法及應用 貝葉斯神經網路在生物序列分析中的應用 基於貝葉斯網路的海上目標識別 貝葉斯原理在發動機標定中的應用 貝葉斯法在繼電器可靠性評估中的應用 相關書籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》 Springer 《貝葉斯決策》 黃曉榕 《經濟信息價格評估以及貝葉斯方法的應用》 張麗 , 閆善文 , 劉亞東 《全概率公式與貝葉斯公式的應用及推廣》 周麗琴 《貝葉斯均衡的應用》 王輝 , 張劍飛 , 王雙成 《基於預測能力的貝葉斯網路結構學習》 張旭東 , 陳鋒 , 高雋 , 方廷健 《稀疏貝葉斯及其在時間序列預測中的應用》 鄒林全 《貝葉斯方法在會計決策中的應用》 周麗華 《市場預測中的貝葉斯公式應用》 夏敏軼 , 張焱 《貝葉斯公式在風險決策中的應用》 臧玉衛 , 王萍 , 吳育華 《貝葉斯網路在股指期貨風險預警中的應用》 黨佳瑞 , 胡杉杉 , 藍伯雄 《基於貝葉斯決策方法的證券歷史數據有效性分析》 肖玉山 , 王海東 《無偏預測理論在經驗貝葉斯分析中的應用》 嚴惠雲 , 師義民 《Linex損失下股票投資的貝葉斯預測》 卜祥志 , 王紹綿 , 陳文斌 , 余貽鑫 , 岳順民 《貝葉斯拍賣定價方法在配電市場定價中的應用》 劉嘉焜 , 范貽昌 , 劉波 《分整模型在商品價格預測中的應用》 《Bayes方法在經營決策中的應用》 《決策有用性的信息觀》 《統計預測和決策課件》 《貝葉斯經濟時間序列預測模型及其應用研究》 《貝葉斯統計推斷》 《決策分析理論與實務》
F. 貝葉斯網路主流工具軟體
目前國際上存在許多種 BN 處理工具,一般均同時支持多種圖模型處理。下面介紹幾種比較常見的 BN 工具軟體。
( 1) Hugin Expert: 該軟體包括一系列產品,自稱是基於 BN 的人工智慧領域的領航者,既可作為單個工具使用,也可集成到其他產品中使用。目前在軟體、醫學、工業、軍事、警容、信息處理以及農業等多個領域得到了廣泛應用。如用應用於 NOKIA 公司的移動網路故障診斷、醫學決策支持、隧道施工設計階段的決策支持、數據挖掘及風險評估等。
( 2) 微軟的 BBN( Microsoft Belief Networks) : 該軟體採用視窗界面,界面友好且操作簡單,並且提供了 API 介面,以供 VB 調用。缺點是用戶不能自主選擇概率推理演算法,且不提供結構學習功能,即不能從數據中學習建立 BN 模型。
( 3) Netica: 該軟體是加拿大 Norsys 軟體公司開發研製的圖模型處理工具。其主要特點是提供了圖形化的建模界面及概率參數展示界面,方便直觀且易於操作,並且提供了 API介面,供 Java 調用。缺點是用戶不能自主選擇概率推理演算法。
( 4) Ergo: 該軟體是由 Noetic 公司開發研製的可視化建模分析軟體,它功能單一且應用范圍較窄,主要用於專家系統的建立,對節點的個數和狀態空間的范圍都有一定程度上的限制。
( 5) BNJ: 是由肯尼索州立大學開發的開放源碼軟體,採用視窗界面,兼容其他 BN 建模軟體的文件格式,包括 Netica、Ergo、Hugin Expert、GeNie 等。支持精確推理和近似推理、結構學習和參數學習,並且提供了 API 介面供調用。該軟體最大的缺點是可操作性差,且幫助功能相對較弱。
( 6) GeNie 2. 0: 該軟體是匹茲堡大學決策系統實驗室( Decision Systems Laboratory,U-niversity of Pittsburgh) 開發研製的圖模型處理軟體。採用了圖形化建模界面,界面直觀,操作簡單,提供多種推理演算法,且支持結構學習和參數學習。該實驗室還用 VC + + 開發了API 介面 SmileX 和 Smile. net ,以供 VB、VC + + 、Java、C Sharp 等多種語言調用。
上述工具各有特點,本文選用了 GeNie 軟體及其提供的 Smile. net 軟體包,進行 BN 模型構建、BN 學習及推理等工作。圖 2. 1 為 GeNie 2. 0 軟體的主界面。
圖 2. 1 Genie2. 0 主界面
G. 求應用貝葉斯網路的MATLAB程序實例(或R軟體程序實例)
希望有幫助,呵呵
H. 怎麼通俗易懂地解釋貝葉斯網路和它的應用
第一步:貝葉斯網路工抄具箱
第二步:解壓壓縮包
第三步:將工具箱中bnt文件夾復制到matlab工具箱文件夾中(D:\Program Files\MATLAB\R2014a\toolbox)
第四步:打開matlab2014a
貝葉斯網路是處理不確定信息做有效的表示方法之一。其關鍵的特徵之一是提供了把整個概率分布分解成幾個局部分布的方法,網路的拓撲結構表明如何從局部的概率分布獲得完全的聯合概率分布。
貝葉斯網路適合於對領域知識具有一定了解的情況,至少對變數間的依賴關系較清楚。否則直接從數據中學習貝葉斯網路結構復雜性極高(隨節點的增加成指數級增長)