帶寬和碼元速率
❶ 傳輸的速率與信道帶寬之間的關系是什麼什麼是低通信
數據傳輸速率的定義
數據傳輸速率是描述數據傳輸系統的重要技術指標之一。數據傳輸速率在數值上等於每秒種傳輸構成數據代碼的二進制比特數,單位為比特/秒(bit/second),記作bps。對於二進制數據,數據傳輸速率為:S=1/T(bps)
其中,T為發送每一比特所需要的時間。例如,如果在通信信道上發送一比特0、1信號所需要的時間是0.001ms,那麼信道的數據傳輸速率為1
000 000bps。
在實際應用中,常用的數據傳輸速率單位有:kbps、Mbps和Gbps。其中:
1kbps=103bps 1Mbps=106kbps 1Gbps=109bps
帶寬與數據傳輸速率
在現代網路技術中,人們總是以「帶寬」來表示信道的數據傳輸速率,「帶寬」與「速率」幾乎成了同義詞。信道帶寬與數據傳輸速率的關系可以奈奎斯特(Nyquist)准則與香農(Shanon)定律描述。
奈奎斯特准則指出:如果間隔為π/ω(ω=2πf),通過理想通信信道傳輸窄脈沖信號,則前後碼元之間不產生相互竄擾。因此,對於二進制數據信號的最大數據傳輸速率Rmax與通信信道帶寬B(B=f,單位Hz)的關系可以寫為:
Rmax=2.f(bps)
對於二進制數據若信道帶寬B=f=3000Hz,則最大數據傳輸速率為6000bps。
奈奎斯特定理描述了有限帶寬、無雜訊信道的最大數據傳輸速率與信道帶寬的關系。香農定理則描述了有限帶寬、有隨機熱雜訊信道的最大傳輸速率與信道帶寬、信噪比之間的關系。
香農定理指出:在有隨機熱雜訊的信道上傳輸數據信號時,數據傳輸速率Rmax與信道帶寬B、信噪比S/N的關系為:
Rmax=B.log2(1+S/N)
式中,Rmax單位為bps,帶寬B單位為Hz,信噪比S/N通常以dB(分貝)數表示。若S/N=30(dB),那麼信噪比根據公式:
S/N(dB)=10.lg(S/N)
可得,S/N=1000。若帶寬B=3000Hz,則Rmax≈30kbps。香農定律給出了一個有限帶寬、有熱雜訊信道的最大數據傳輸速率的極限值。它表示對於帶寬只有3000Hz的通信信道,信噪比在30db時,無論數據採用二進制或更多的離散電平值表示,都不能用越過0kbps的速率傳輸數據。
因此通信信道最大傳輸速率與信道帶寬之間存在著明確的關系,所以人們可以用「帶寬」去取代「速率」。例如,人們常把網路的「高數據傳輸速率」用網路的「高帶寬」去表述。因此「帶寬」與「速率」在網路技術的討論中幾乎成了同義詞。
帶寬:信號傳輸頻率的最大值和最小值之差(Hz)。信道容量:單位時間內傳輸的最大碼元數(Baud),或單位時間內傳輸的最大二進制數(b/s)。數據傳輸速率:每秒鍾傳輸的二進制數(b/s)。
帶寬 :信道可以不失真地傳輸信號的頻率范圍。為不同應用而設計的傳輸媒體具有不同的信道質量,所支持的帶寬有所不同。
信道容量:信道在單位時間內可以傳輸的最大信號量,表示信道的傳輸能力。信道容量有時也表示為單位時間內可傳輸的二進制位的位數(稱信道的數據傳輸速率,位速率),以位/秒(b/s)形式予以表示,簡記為bps。
數據傳輸率:信道在單位時間內可以傳輸的最大比特數。信道容量和信道帶寬具有正比的關系:帶寬越大,容量越大。(這句話是說,信道容量只是在受信噪比影響的情況下的信息傳輸速率)低通信道:
任何實際的信道帶寬都是有限的,在傳輸信號時帶來的各種失真以及存在的多種干擾,使得信道上的碼元傳輸速率有一個上限。1924年奈奎斯特推導出在具有理想低通矩形特性的信道的情況下的最高碼元傳輸速率公式:
理想低通信道的最高碼元傳輸速率=2W BaudW:理想低通信道的帶寬,單位為赫;Baud:波特,碼元傳輸速率單位,1波特為每秒傳送1個碼元。奈氏准則的另一種表達方法是:每赫帶寬的理想低通信道的最高碼元傳輸速率是每秒傳送2個碼元。
對於具有理想帶通矩形特性的信道(帶寬為W),奈氏准則就變為
理想帶通信道的最高碼元傳輸速率=W Baud
即每赫帶寬的帶通信道的最高碼元傳輸速率為每秒傳送1個碼元。
❷ QPSK碼元速率為50k,比特速率是多少,帶寬又是多少
QPSK每個符號含有2bit信息量,因而比特率是100kbps,而帶寬通常和比特率同義
❸ 帶寬和傳輸速率有什麼不同
頻帶就是指頻率范圍,
帶寬的兩種概念
如果從電子電路角度出發,帶寬(Bandwidth)本意指的是電子電路中存在一個固有通頻帶,這個概念或許比較抽象,我們有必要作進一步解釋。大家都知道,各類復雜的電子電路無一例外都存在電感、電容或相當功能的儲能元件,即使沒有採用現成的電感線圈或電容,導線自身就是一個電感,而導線與導線之間、導線與地之間便可以組成電容——這就是通常所說的雜散電容或分布電容;不管是哪種類型的電容、電感,都會對信號起著阻滯作用從而消耗信號能量,嚴重的話會影響信號品質。這種效應與交流電信號的頻率成正比關系,當頻率高到一定程度、令信號難以保持穩定時,整個電子電路自然就無法正常工作。為此,電子學上就提出了「帶寬」的概念,它指的是電路可以保持穩定工作的頻率范圍。而屬於該體系的有顯示器帶寬、通訊/網路中的帶寬等等。
而第二種帶寬的概念大家也許會更熟悉,它所指的其實是數據傳輸率,譬如內存帶寬、匯流排帶寬、網路帶寬等等,都是以「位元組/秒」為單位。我們不清楚從什麼時候起這些數據傳輸率的概念被稱為「帶寬」,但因業界與公眾都接受了這種說法,代表數據傳輸率的帶寬概念非常流行,盡管它與電子電路中「帶寬」的本意相差很遠。
對於電子電路中的帶寬,決定因素在於電路設計。它主要是由高頻放大部分元件的特性決定,而高頻電路的設計是比較困難的部分,成本也比普通電路要高很多。這部分內容涉及到電路設計的知識,對此我們就不做深入的分析。而對於匯流排、內存中的帶寬,決定其數值的主要因素在於工作頻率和位寬,在這兩個領域,帶寬等於工作頻率與位寬的乘積,因此帶寬和工作頻率、位寬兩個指標成正比。不過工作頻率或位寬並不能無限制提高,它們受到很多因素的制約
數據傳輸速率
1)數據傳輸速率--每秒傳輸二進制信息的位數,單位為位/秒,記作bps或b/s。
計算公式: S=1/T log2N(bps) ⑴
式中 T為一個數字脈沖信號的寬度(全寬碼)或重復周期(歸零碼)單位為秒;
N為一個碼元所取的離散值個數。
通常 N=2K,K為二進制信息的位數,K=log2N。
N=2時,S=1/T,表示數據傳輸速率等於碼元脈沖的重復頻率。
2)信號傳輸速率--單位時間內通過信道傳輸的碼元數,單位為波特,記作Baud。
計算公式: B=1/T (Baud)
式中 T為信號碼元的寬度,單位為秒.
信號傳輸速率,也稱碼元速率、調制速率或波特率。
由⑴、⑵式得: S=B log2N (bps) 或 B=S/log2N (Baud) 帶寬越大,數據傳輸速率越大
❹ 帶寬和速率的區別
速率很好說,就是二進制數字通信裡面每秒中傳輸的比特數目,也就是碼版元數目,單權位是bit/s。
模擬通信的帶寬和數字通信的帶寬是不相同的。模擬帶寬是模擬信號的通頻帶寬度,一般來說模擬信號在頻域上頻譜是有限的,它的頻譜寬度就是帶寬,單位用HZ表示。常見的模擬帶寬表示有3dB帶寬。
數字通信的帶寬=速率。
❺ 帶寬和傳輸速率的關系是什麼
所謂 1M 寬頻,其實是指 1Mbps (兆比特每秒),亦即 1 x 1024 / 8 = 128KB/sec,但這只是理論上的速度,實際上則要再扣約 12% 的信息頭標識等各種控制訊號,故其傳輸速度上限應為 112KB/sec 左右。
寬頻與實際速度的大致對應關系如下:
1 M =112 KB/s
2 M =225 KB/s
8 M =901 KB/s
10 M =1126 KB/s
❻ 通信原理問題~~~ 到底什麼時候 帶寬=2*碼元速率(即B=2*RB)什麼時候碼元速率=2*帶寬(即RB=2*B)
如果你使用的是國防工業出版社的通信原理的話:P140,指出,RZ(歸零)專基帶碼所佔用的屬頻譜,Bs=2fs=2RB,意味著該種信號的帶寬是碼元速率的2倍(近似)。P151講到了系統如何避免碼間串擾,提出系統帶寬B是碼元速率RB的1/2的時候,可以避免。在不同的場景中,用不同的公式,二者所說的不是一個問題。其中RB,是碼元速率;Bs是基帶信號帶寬,fs是位定時信號的頻率,B是通信系統的等效帶寬。
求賞分....
❼ 帶寬和傳輸速率的關系
所謂 1M 寬頻,其實是指 1Mbps (兆比特每秒),亦即 1 x 1024 / 8 = 128KB/sec,但這只是理論上的速度,實際上則要再扣約 12% 的信息頭標識等各種控制訊號,故其傳輸速度上限應為 112KB/sec 左右。
寬頻與實際速度的大致對應關系如下:
1 M =112 KB/s
2 M =225 KB/s
8 M =901 KB/s
10 M =1126 KB/s
❽ 簡述帶寬,波特率,碼元和位傳輸率的區別
帶寬: 指在最小衰減的情況下能夠通過這種介質的頻率范圍。它是介質的一種物理特性(通常從0到某一個最大的頻率),度量單位是HZ(赫茲 )。
波特率: 是指每秒鍾的采樣的次數。 每個采樣發送一份信息,這份信息稱碼元。
位傳輸率:是指在一條信道上的信息的數量,它等於每秒采樣乘以每個采樣的位數 。
❾ 帶寬和傳輸速率有什麼不同
帶寬是通道來傳輸信息的自能力;傳輸速率是單位時間內在通道中傳輸的信息量。