車輛測速的方法
移動測速系統抄分為:雷襲達和激光測速
運用的原理是 多普勒頻移
英文名稱:Doppler Effect ,多普勒效應是為紀念克里斯琴·多普勒·約翰(Doppler, Christian Johann)而命名的,他於1842年首先提出了這一理論。主要內容為:物體輻射的波長因為光源和觀測者的相對運動而產生變化。在運動的波源前面,波被壓縮,波長變得較短,頻率變得較高 (藍移 blue shift)。
多普勒頻移,當運動在波源後面時,會產生相反的效應。波長變得較長,頻率變得較低 (紅移 red shift)。波源的速度越高,所產生的效應越大。根據光波紅(藍)移的程度,可以計算出波源循著觀測方向運動的速度
⑵ 怎麼測量機動車超速
機動車超速自動監測系統比較常用的測速原理主要有雷達、激光、地感線圈以及視頻等,再輔以適當的拍照記錄傳輸系統就構成了各種原理的監測系統.
一、測速多普勒原理
雷達為英文Radar一詞的譯音,該詞是由Radio Detection And
Ranging一語中諸字前綴縮寫而成一語中諸字前綴縮寫而成,為無線電探向與測距之意。雷達用於測速主要是應用了多普勒原理,當一定發射頻率的雷達波束射到移動目標時,其反射頻率攜帶的目標速度信息與發射頻率不同,兩者之差稱為多普勒頻率,多普勒頻率與目標的移動速度成正比。當目標向雷達天線靠近時,反射信號頻率將高於發射機頻率;反之,當目標遠離天線方向而去時,反射信號頻率將低於發射機頻率。使用雷達測速對角度的要求較高,測速系統應正對運動物體的移動方向,當測速角度小於5°時,對測量結果的影響不大於1km/h,通常可以忽略不計;否則,應對角度帶來的Cosine效應進行修正,以保證測量結果的准確可靠。
以一種常見的雷達原理超速監測系統為例,對於固定安裝在道路上方,以一定角度俯視單一機動車道的監測系統,設計時需要考慮安裝角度帶來的影響,對測量結果進行修正。這種懸掛設計在車流量較小的公路上可以對單車道進行監測,安裝時需要搭設龍門架。
雷達原理的監測系統應用廣泛,具有技術成熟、價格相對較低等優點,容易推廣。目前,使用較多的是一種窄波束高性能雷達,它的波瓣角約在4°-6°,測速時間可以達到幾十個毫秒。窄波束高性能雷達與早期寬波束雷達相比較更適於對單車道超速情況進行監控。寬波速雷達的雷達波發射錐角度一般在10°-30°間,掃描面比較廣,監測區域大,當相鄰車道兩車並排進入超速監測區域或同車道兩車連續進入超速監測區域時,雷達監測系統無法明確認定哪一部車輛違規,很容易造成錯抓誤判。寬波束雷達的測速時間一般為幾百毫秒,因此,車速過高的車輛經過監測區域一段距離後才能測出它的速度,這時可能已來不及捕捉其圖像信息,從而造成漏抓或誤抓的情況。因此,寬波束雷達不適用於單車道的車速監測系統。
二、激光測速原理
激光測速原理也被稱作激光雷達原理(Ladar,Laser
Detection And
Ranging),即激光探向與測距之意。Ladar設備採用紅外線半導體激光二極體發射出一定頻率極窄的光束精確地瞄準目標,通過測量紅外線光波在Ladar設備與目標之間的傳送時間來決定速度。由於光速是固定的,激光脈沖傳送到目標再折返的時間會與距離成正比。以固定間隔發射兩個脈沖,即可測得兩個距離;將此兩距離之差除以發射時間間隔即可得到目標的速度。在理論上,發射兩次脈沖即可測量速度。而實際上為避免錯誤,一般Ladar設備在一秒鍾內發射高達上千組的脈沖波,以最小平方法求其平均值計算目標速度,就可以得到非常准確的速度。測速時間可以達幾毫秒至幾十毫秒,相比雷達具有更高的測速准確度;同時,Ladar的發射錐角度只有不到0.1°,其狹窄光束使兩車被同時偵測到的機會等於零,因此,以Ladar測速可以明確認定受測目標。這些特性使Ladar監測系統在較高車流量的路況上能夠准確地工作。
同雷達原理監測系統一樣,對於固定安裝在道路的上方,以一定角度俯視機動車道的Ladar監測系統,設計時需要考慮安裝角度帶來的影響,並對測量結果進行校正,這種懸掛設計只對單獨車道進行監測。但與雷達監測系統相比,激光測速具有測量速度快、監測目標准確、測速准確度高等特點,在兩車道車輛並行或車輛連續進入監測區域時,可以有效地得到車速,而不會出現錯抓誤判的情況。此外,由於激光二極體發射率很窄,其偵測器極易接收到精確的波長,因此在日間有強烈陽光時仍能正常操作。相對於雷達,激光測速產品價格較高。
三、地感線圈測速原理
地感線圈測速一般要用到兩個線圈,兩個線圈之間區域即為超速監測區域。當機動車進入第一個線圈時會在電路中產生電磁感應,同時觸發計時器開始計時;走出第二個線圈後,計時結束,根據兩個線圈之間的距離和產生感應的時間差,以距離除以時間就可以算出車輛通過超速監測區域時的速度。有時為提高測速准確度,可以加入第三個線圈,取得車輛經過各線圈時的平均值,將其作為測量值。相對於其它測速方式,該系統因沒有更多精密高智能化的設備卻能獲得比較高的捕獲率,因此性價比較高。其不足之處是安裝施工時會破壞路面,影響路面壽命,且線圈在地下容易受環境影響而發生形狀改變,還受重型車輛擠壓、路面修理等損壞,使用2-3年就需要更換線圈,實際維修養護費用高於其它測速設備。
四、視頻測速原理
最早出現的視頻原理測速監測系統是虛擬線圈視頻測速系統,即在視頻圖像中的車道上,相距(30-50)m處設兩個虛擬線圈,由於攝像機採集圖象的速度是一定的(x秒/幀),通過計算圖片的幀數可以得到經過的時間,利用車輛通過兩個虛擬線圈的時間差,就可得出車輛的運行速度。其優點是簡單方便、不破壞路面、不用更換線圈。該測速原理最主要的缺點是測速誤差大,容易受到光照等因素的影響;其次,凡經過虛擬線圈的物體均被記錄下來,無效數據多、誤判車輛多;再次,一次只能對一個車道的一輛車進行測速,兩輛車或數輛車同時經過時無法測速,更無法判別其是否超速。由於誤判車輛較多及測速誤差太大,目前視頻測速基本已被淘汰。
現在比較准確的是精確視頻機動車測速系統,該系統主要採用了目標識別與目標跟蹤技術。這些技術原來主要用於航天領域。目標識別技術為圖象的特徵模式識別,其基本原理是對所要識別的目標特徵進行詳細的描述和建模。正確建模是該技術的關鍵。目標跟蹤技術也可稱為目標鎖定跟蹤技術,就是在一定的區域范圍內不丟失目標。該系統應用在機動車測速方面,應保證在60m距離內不丟失機動車目標。
具體方法是,通過多路採集卡將測速及車牌攝像機的圖像信號實時傳送到計算機中,由計算機進行實時分析計算。對圖像進行目標識別,在判別出真正的目標後進行目標鎖定並對鎖定的目標進行實時跟蹤,同時計算出車輛的精確位置並得出目標運動的矢量軌跡曲線圖。圖像中車輛的位置都是可以准確確定的,而每幅圖像的採集時間是40ms(PAL制標准)固定不變,所以,可得出非常精確的位移差ΔS和時間差Δt。從矢量曲線圖中取A、B兩點,即可得出其位移差ΔS和時間差Δt,V=ΔS/Δt,式中:V—汽車運動速度,ΔS—A、B兩點之間的精確距離,Δt—汽車由A點到達B點所需的准確時間。攝像機由上向下,俯視看路面,路面上任何車輛的一舉一動都會在系統的監視之下。可以最大限度地獲取路面上的車輛信息,所以得到的速度非常精確。
總之,不同原理的監測系統有其各自的優缺點,目前在國內應用最廣泛的主要是地感線圈原理和雷達原理的監測系統,這兩種監測系統在滿足一定測速准確度要求的條件下價格相對便宜,性價比較高。相信隨著科學技術的進步與發展,各種原理的監測系統會更加完善,發揮各自的長處,還會涌現出更多新的產品,為更好地維護道路交通安全服務。
⑶ 交警是怎麼測速的
利用測速儀來測速。根據儀器不同測的距離不一樣。常用的測速儀主要分為雷達測速儀和激光測速儀。
激光測速儀測速距離相對於雷達測速有效距離遠,可測到1000米的距離,通過對被測物體發射激光光束,並接收該激光光束的反射波,記錄該時間差,來確定被測物體與測試點的距離。
測速雷達發現有車輛超速,會立刻開啟照相程序,對涉嫌超速車輛進行高精度拍攝,記錄下該車輛的車牌已經駕駛員特徵。交警會立即通報前方守候的稽查警員對嫌疑車輛進行攔截檢查,同時往稽查點傳送嫌疑車輛超速證據。
(3)車輛測速的方法擴展閱讀:
高速公路的測速儀測的是瞬時速度。
高速公路的測速儀是根據多普勒效應進行測速。
原理:當目標向雷達天線靠近時,反射信號頻率將高於發射機頻率;
反之,當目標遠離天線而去時,反射信號頻率將低於發射機率。
如此即可藉由頻率的改變數值,計算出目標與雷達的相對速度。
定點測速有固定測速和流動測速兩種測速方式:
1、固定測速就是交警部門在一些需要監控的地點設置測速儀器監控和抓拍超速車輛
2、流動測速是交警部門在一些臨時需要監控的地點設置可移動的測速儀器,具體地點是不知道的
需要提醒注意的是:這兩種測速方式有的路段是混合使用,區間測速沒有超速,但是可能會有定點超速。所以一定不要有僥幸心理
⑷ 高速公路上是怎麼對汽車實現測速的
在高速公路上行駛過程中,由於道路順暢,許多「老司機」們在駕駛時,可能會出現超速的情況,那麼高速公路上是如何測速的呢?該如何預防?
高速公路上是如何測速的?高速公路上較為常見的測速方法有如下四種:
因雷達測速亦有多年的使用歷史,測速比較精準,高速交警多採用來進行交通安全管理。近幾年高清視頻監控發展,圖像處理技術越來越成熟,高速管理部門採用視頻監控測速的也越來越普遍。
測速是保障安全,不要認為知道這些測速方法就能逃避罰款哦,特別是在高速路上,司機遵守交通法規,一定記得控制好車速,按照規定速度安全通行。
⑸ 交警的定點測速電子眼工作原理是什麼怎樣測定車速超速
側面測試原理是:行駛中車輛、雷達和雷達與車道垂直點構成一個直角三角形,雷達發射雷達波,遇到車身反射回來,雷達即可計算出雷達與車輛之間直角三角形斜邊的長度了,而雷達到車道之間的距離是預先知道的。
根據勾股定理,就可以計算出車輛到垂直點的距離,即另一條直角邊的長度了。雷達根據兩次發射雷達波,就可以算出車輛兩個時間點之間走了多長距離(兩次測算出的直角邊長度相減即可)。用該距離除以時間間隔,就得到車輛的速度了。
正前方測試原理是:兩次發射雷達波,根據回波定位兩個時間點車輛位置,把兩個位置坐標進行相減運算,即可得到車輛在兩次雷達波發射時間內走了多長距離,用該距離除以雷達波發射時間間隔,即可得到車輛速度。
測速雷達發現有車輛超速,會立刻開啟照相程序,對涉嫌超速車輛進行高精度拍攝,記錄下該車輛的車牌已經駕駛員特徵。交警會立即通報前方守候的稽查警員對嫌疑車輛進行攔截檢查,同時往稽查點傳送嫌疑車輛超速證據。
(5)車輛測速的方法擴展閱讀:
區間測速是在同一路段上布設兩個相鄰的監控點,原理是基於車輛通過前後兩個監控點的時間來計算車輛在該路段上的平均行駛速度,並依據該路段上的限速標准判定車輛是否超速違章。
定點測速:
其實就是在某一個地點對來往車輛經過測速位置的瞬間速度進行記錄,對經過這個地點的司機起到警示作用。但是現在很多司機會選擇在車上安裝電子狗檢測前方的測速設備,當快到測速點的時候選擇踩剎車躲避設備的抓拍。
這樣雖然可以躲避電子設備的抓怕,但是卻有極大的安全隱患,有可能會使後方來不及剎車的車主追尾前方車輛。還有的司機朋友會在經過測速點後以超過120KM/小時的速度更快行駛,起不到規范安全駕駛的作用。
定點測速的測速效果不是特別理想,所以又有了區間測速
區間測速是交警部門投入的另外一種測速設備,這種測速原理是在一個路段上設置相鄰的兩個測速點,通過記錄車輛經過這個路段的時間來計算出車輛通過這個路段的平均速度,這個測速方法更加科學公正。
例如在一個限速120KM/小時的路段,一輛車經過60公里的路段用的時間是30分鍾,那麼這輛車經過這個路段的平均速度是120KM/小時。如果這輛車用的時間少於30分鍾,這輛車就超速了,會面臨後面的處罰,即使中途換了車道,系統也是會自動識別抓拍
定點測速有固定測速和流動測速兩種測速方式:
1 固定測速就是交警部門在一些需要監控的地點設置測速儀器監控和抓拍超速車輛
2 流動測速是交警部門在一些臨時需要監控的地點設置可移動的測速儀器,具體地點是不知道的
需要提醒注意的是:這兩種測速方式有的路段是混合使用,區間測速沒有超速,但是可能會有定點超速。所以一定不要有僥幸心理
⑹ 交通事故車輛測速方法
國外是看緊急煞車在路面留下的痕跡長短
或者看車子的變形程度
有的車款在撞擊的最後一刻時速表會停留在撞擊時的速度
⑺ 關於汽車測速
也不用太害怕,第一,現在交管部門最新規定時速60以下不作測速,限速40,20隻是作安全回警示,第二答,路面定點測速一般都有流動測速車,在5——50米距離都有可能被測到,還有上空電子眼測速,在電子眼鏡頭對准處路面會有兩個明顯的六邊形,那就是車輛超速被拍照的位置,測到的就是經過那個線圈的瞬間速度
⑻ 汽車測速計如何測速
不知你說的汽車測速計是指汽車上的車速表還是警察用的那種看你超沒超速的測速計?
⑼ 測速方法有哪些
激光可以進行測速。
激光測速(measurement of velocity by laser)是測量移動物體反射回來的光專的頻率由於多普勒屬(Doppler)效應發生的偏離,在被測物體是熱的或者是易碎的不能用接觸法時,這種方法是很有用的,已用此法測出軋鋼機中熾熱鋼坯的移動速度。
激光測速就是能通過激光對物體運行速度的測量,它是對被測物體進行兩次有特定時間間隔的激光測距,取得在該一時段內被測物體的移動距離,從而得到該被測物體的移動速度。同時它也是一種新型的測速測量技術。隨著科技的發展,傳統的測量設備已不能滿足現狀的需求,已漸漸地被淘汰,而激光測速感測器已被廣泛使用,它在很多領域中測量有著重要意義。ZLS-C50激光測速感測器和ZLS-Px激光測速感測器是特別定製高精度的兩款激光測速感測器,同時也是目前國內常用的兩款高精度激光測速感測器。並且它們通過與計算機連接,可對被測物進行自動化、智能化的測量控制,這也是現在測量技術與計算機技術相結合的產物。
⑽ 交通警察(交警)常用的交通測速方式有哪些
現行的檢測器種類有很多,包括磁感應檢測器,波頻車輛檢測器,視頻檢測器等。根據安裝方式可以分為埋設式和懸掛式。
(1)磁感應檢測器(多為埋設式檢測系統)
環形線圈檢測器是傳統的交通檢測器,是目前世界上用量最大的一種檢測設備。車輛通過埋設在路面下的環形線圈,引起線圈磁場的變化,檢測器據此計算出車輛的流量、速度、時間佔有率和長度等交通參數,並上傳給中央控制系統,以滿足交通控制系統的需要。此種方法技術成熟,易於掌握,並有成本較低的優點。
這種方法也有以下缺點:a. 線圈在安裝或維護時必須直接埋入車道,這樣交通會暫時受到阻礙。b. 埋置線圈的切縫軟化了路面,容易使路面受損,尤其是在有信號控制的十字路口,車輛啟動或者制動時損壞可能會更加嚴重。c. 感應線圈易受冰凍、路基下沉、鹽鹼等自然環境的影響。d. 感應線圈由於自身的測量原理所限制,當車流擁堵,車間距小於3m的時候,其檢測精度大幅度降低,甚至無法檢測。
(2)波頻車輛檢測器(多為懸掛式檢測系統)
波頻車輛檢測器是以微波、超聲波和紅外線等對車輛發射電磁波產生感應的檢測器,這里主要介紹微波檢測器(RTMS),它是一種價格低、性能優越的交通檢測器,可廣泛應用於城市道路和高速公路的交通信息檢測。
RTMS的工作方式是:採用側掛式,在扇形區域內發射連續的低功率調制微波,並在路面上留下一條長長的投影。RTMS以2米為一「層」,將投影分割為32層。用戶可將檢測區域定義為一層或多層。RTMS根據被檢測目標返回的回波,測算出目標的交通信息,每隔一段時間通過RS-232向控制中心發送。它的車速檢測原理是:根據特定區域的所有車型假定一個固定的車長,通過感應投影區域內的車輛的進入與離開經歷的時間來計算車速。一台RTMS側掛可同時檢測8個車道的車流量、道路佔有率和車速。
RTMS的測量方式在車型單一,車流穩定,車速分布均勻的道路上准確度較高,但是在車流擁堵以及大型車較多、車型分布不均勻的路段,由於遮擋,測量精度會受到比較大的影響。另外,微波檢測器要求離最近車道有3m的空間,如要檢測8車道,離最近車道也需要7-9m的距離而且安裝高度達到要求。因此,在橋梁、立交、高架路的安裝會受到限制,安裝困難,價格也比較昂貴。
(3)視頻檢測器
視頻檢測器是通過視頻攝像機作感測器,在視頻范圍內設置虛擬線圈,即檢測區,車輛進入檢測區時使背景灰度值發生變化,從而得知車輛的存在,並以此檢測車輛的流量和速度。檢測器可安裝在車道的上方和側面,與傳統的交通信息採集技術相比,交通視頻檢測技術可提供現場的視頻圖像,可根據需要移動檢測線圈,有著直觀可靠,安裝調試維護方便,價格便宜等優點,缺點是容易受惡劣天氣、燈光、陰影等環境因素的影響,汽車的動態陰影也會帶來干擾。
反雷達測速器的原理
A、B、C三款設備都採用GPS衛星定位系統實現「反雷達探測」的功能。安裝前,通過網路下載該城市的最新數據———各個雷達測速點、闖紅燈監控點、加油站、高速公路入口的GPS坐標;與GPS衛星連接後,GPS導航系統自動計算車輛行駛的軌跡、速度,並與存儲的坐標點進行對比;當發現行駛軌跡覆蓋了存儲的坐標點,即按照預設的距離提前量,通過語音或顯示屏提示駕駛者。
交警測速方面的測速方式