當前位置:首頁 » 撥號測速 » 生態系統速率

生態系統速率

發布時間: 2021-02-27 13:16:41

❶ 人類行為是否影響生態系統穩定性速度方向,如何影響

是,人類行為過度,會破壞生態平衡,導致生態失衡,如過度傷害動物,會導致食物鏈紊亂等

❷ 高中生物 J型曲線 S型曲線 的增長率和增長速率大小變化是【求務必准確】

J型曲線:在模型假設中已經規定λ是不變的,所以其增長率λ-1,也就是恆定不變的。

S型曲線:生態學中對其增長率的規定是隨種群數量增長成比例地下降。用公式可表示為:1-N/K,其中N是當前種群數量,K是環境容納量。

自然界某一物種在理想條件下種群數量增長的形式,如果以時間做橫坐標,種群數量做縱坐標畫出來的曲線表示,曲線大致成J型,這樣的曲線叫 J型曲線。

若物種在生態系統中無天敵,且食物、空間等資源充足(理想環境),則增長函數為N(t)=n(p^t),其中,N(t)為第t年的種群數量,t為時間,(p-1)為每年的增長率(大於1)。圖象形似J形。

在自然界中,環境條件是有限的,因此,種群不可能按照「J」型曲線無限增長。當種群在一個有限的環境中增長時,隨著種群密度的上升。

個體間由於有限的空間、食物和其他生活條件而引起的種內斗爭必將加劇,以該種群生物為食的捕食者的數量也會增加,這就會使這個種群的出生率降低,死亡率增高,從而使種群數量的增長率下降。

(2)生態系統速率擴展閱讀:

S型增長曲線應用

有害動物的防治實例

對家鼠等有害動物的控制,應通過清掃衛生降低其環境容納量(K值)

瀕危動物種群的拯救和恢復實例

大熊貓棲息地遭到破壞後,由於食物減少和活動范圍減小,其K值變小,因此,建立自然保護區,改善棲息環境,提高K值,是保護大熊貓的根本措施。

生產方面

生產上的捕獲期就確定在種群數量為K/2時,但殺蟲效果最好的時期是在潛伏期。

❸ 生態系統中分解速率最高的是

分解者

❹ 生態系統是什麼

生態系統
生態系統的概念是由英國生態學家坦斯利(A.G.Tansley, 1871—1955)在1935年提出來的,他認為,「生態系統的基本概念是物理學上使用的『系統』整體。這個系統不僅包括有機復合體,而且包括形成環境的整個物理因子復合體」。「我們對生物體的基本看法是,必須從根本上認識到,有機體不能與它們的環境分開,而是與它們的環境形成一個自然系統。」「這種系統是地球表面上自然界的基本單位,它們有各種大小和種類。」

隨著生態學的發展,人們對生態系統的認識不斷深入。20世紀40年代,美國生態學家林德曼(R.L.Lindeman)在研究湖泊生態系統時,受到我國「大魚吃小魚,小魚吃蝦米,蝦米吃泥巴」這一諺語的啟發,提出了食物鏈的概念。他又受到「一山不能存二虎的啟發,提出了生態金字塔的理論,使人們認識到生態系統的營養結構和能量流動的特點。今天,人們對生態系統這一概念的理解是:生態系統是在一定的空間和時間范圍內,在各種生物之間以及生物群落與其無機環境之間,通過能量流動和物質循環而相互作用的一個統一整體。生態系統是生物與環境之間進行能量轉換和物質循環的基本功能單位。

為了生存和繁衍,每一種生物都要從周圍的環境中吸取空氣、水分、陽光、熱量和營養物質;生物生長、繁育和活動過程中又不斷向周圍的環境釋放和排泄各種物質,死亡後的殘體也復歸環境。對任何一種生物來說,周圍的環境也包括其他生物。例如,綠色植物利用微生物活動從土壤中釋放出來的氮、磷、鉀等營養元素,食草動物以綠色植物為食物,肉食性動物又以食草動物為食物,各種動植物的殘體則既是昆蟲等小動物的食物,又是微生物的營養來源。微生物活動的結果又釋放出植物生長所需要的營養物質。經過長期的自然演化,每個區域的生物和環境之間、生物與生物之間,都形成了一種相對穩定的結構,具有相應的功能,這就是人們常說的生態系統。

1. 生態系統的概念

生態系統(ecosystem)是英國生態學家Tansley於1935年首先提上來的,指在一定的空間內生物成分和非生物成分通過物質循環和能量流動相互作用、相互依存而構成的一個生態學功能單位。它把生物及其非生物環境看成是互相影響、彼此依存的統一整體。生態系統不論是自然的還是人工的,都具下列共同特性:(1)生態系統是生態學上的一個主要結構和功能單位,屬於生態學研究的最高層次。(2)生態系統內部具有自我調節能力。其結構越復雜,物種數越多,自我調節能力越強。(3)能量流動、物質循環是生態系統的兩大功能。(4)生態系統營養級的數目因生產者固定能值所限及能流過程中能量的損失,一般不超過5~6個。(5)生態系統是一個動態系統,要經歷一個從簡單到復雜、從不成熟到成熟的發育過程。

生態系統概念的提出為生態學的研究和發展奠定了新的基礎,極大地推動了生態學的發展。生態系統生態學是當代生態學研究的前沿。

2. 生態系統的組成成分

生態系統有四個主要的組成成分。即非生物環境、生產者、消費者和分解者。

(1)非生物環境 包括:氣候因子,如光、溫度、濕度、風、雨雪等;無機物質,如C、H、O、N、CO2及各種無機鹽等。有機物質,如蛋白質、碳水化合物、脂類和腐殖質等。

(2)生產者(procers) 主要指綠色植物,也包括藍綠藻和一些光合細菌,是能利用簡單的無機物質製造食物的自養生物。在生態系統中起主導作用。

(3)消費者(consumers) 異養生物,主要指以其他生物為食的各種動物,包括植食動物、肉食動物、雜食動物和寄生動物等。

(4)分解者(decomposers) 異養生物,主要是細菌和真菌,也包括某些原生動物和蚯蚓、白蟻、禿鷲等大型腐食性動物。它們分解動植物的殘體、糞便和各種復雜的有機化合物,吸收某些分解產物,最終能將有機物分解為簡單的無機物,而這些無機物參與物質循環後可被自養生物重新利用。

3. 生態系統的結構

生態系統的結構可以從兩個方面理解。其一是形態結構,如生物種類,種群數量,種群的空間格局,種群的時間變化,以及群落的垂直和水平結構等。形態結構與植物群落的結構特徵相一致,外加土壤、大氣中非生物成分以及消費者、分解者的形態結構。其二為營養結構,營養結構是以營養為紐帶,把生物和非生物緊密結合起來的功能單位,構成以生產者、消費者和分解者為中心的三大功能類群,它們與環境之間發生密切的物質循環和能量流動。

4. 生態系統的初級生產和次級生產

生態系統中的能量流動開始於綠色植物的光合作用。光合作用積累的能量是進入生態系統的初級能量,這種能量的積累過程就是初級生產。初級生產積累能量的速率稱為初級生產力(primary proctivity),所製造的有機物質則稱為初級生產量或第一性生產量(primary proction)。

在初級生產量中,有一部分被植物自己的呼吸所消耗,剩下的部分才以可見有機物質的形式用於植物的生長和生殖,我們稱這部分生產量為凈初級生產量(net primary proction, NPP),而包括呼吸消耗的能量(R)在內的全部生產量稱為總初級生產量(gross primary proction, GPP)。它們三者之間的關系是GPP=NPP+R。GPP和NPP通常用每年每平方米所生產的有機物質乾重(g/m2.a)或固定的能量值(J/m2.a)來表示,此時它們稱為總(凈)初級生產力,生產力是率的概念,而生產量是量的概念。

某一特定時刻生態系統單位面積內所積存的生活有機物質量叫生物量(biomass)。生物量是凈生產量的積累量,某一時刻的生物量就是以往生態系統所累積下來的活有機物質總量。生物量通常用平均每平方米生物體的乾重(g/m2)或能值(J/m2)來表示。生物量和生產量是兩個不同的概念,前者是生態系統結構的概念,而後者則是功能上的概念。如果GP-R>O,生物量增加;GP-R<O,生物量減少;GP=R,則生物量不變,其中的GP代表某一營養級的生產量。某一時期內某一營養級生物量的變化(dB/dt)可用下式推算:dB/dt=GP-R-H-D,式中H代表被下一營養級所取食的生物量,D為死亡所損失的生物量。生物量在生態系統中具明顯的垂直分布現象。

次級生產是除生產者外的其它有機體的生產,即消費者和分解者利用初級生產量進行同化作用,表現為動物和其它異養生物生長、繁殖和營養物質的貯存。動物和其它異養生物靠消耗植物的初級生產量製造的有機物質或固定的能量,稱為次級生產量或第二性生產量(secondary proction),其生產或固定率稱次級(第二性)生產力(secondary proctivity)。動物的次級生產量可由下一公式表示:P=C-FU-R,式中,P為次級生產量,C代表動物從外界攝取的能量,FU代表以糞、尿形式損失的能量,R代表呼吸過程中損失的能量。

5. 生態系統中的分解

生態系統的分解(或稱分解作用)(decomposition)是指死有機物質的逐步降解過程。分解時,無機元素從有機物質中釋放出來,得到礦化,與光合作用時無機元素的固定正好是相反的過程。從能量的角度看,前者是放能,後者是貯能。從物質的角度看,它們均是物質循環的調節器,分解的過程其實十分復雜,它包括物理粉碎、碎化、化學和生物降解、淋失、動物採食、風的轉移及有時的人類干擾等幾乎同步的各種作用。將之簡單化,可看作是碎裂、異化和淋溶三個過程的綜合。由於物理的和生物的作用,把死殘落物分解為顆粒狀的碎屑稱為碎裂;有機物質在酶的作用下分解,從聚合體變成單體,例如由纖維素變成葡萄糖,進而成為礦物成分,稱為異化;淋溶則是可溶性物質被水淋洗出來,是一種純物理過程。分解過程中,這三個過程是交叉進行、相互影響的。

分解過程的速率和特點,決定於資源的質量、分解者種類和理化環境條件三方面。資源質量包括物理性質和化學性質,物理性質包括表面特性和機械結構,化學性質如C:N比、木質素、纖維素含量等,它們在分解過程中均起重要作用。分解者則包括細菌、真菌和土壤動物(水生態系統中為水生小型動物)。理化環境主要指溫度、濕度等。

6. 生態系統中的能量流動

能量是生態系統的基礎,一切生命都存在著能量的流動和轉化。沒有能量的流動,就沒有生命和生態系統。流量流動是生態系統的重要功能之一,能量的流動和轉化是服從於熱力學第一定律和第二定律的,因為熱力學就是研究能量傳遞規律和能量形式轉換規律的科學。

能量流動可在生態系統、食物鏈和種群三個水平上進行分析。生態系統水平上的能流分析,是以同一營養級上各個種群的總量來估計,即把每個種群都歸屬於一個特定的營養級中(依據其主要食性),然後精確地測定每個營養級能量的輸入和輸出值。這種分析多見於水生生態系統,因其邊界明確、封閉性較強、內環境較穩定。食物鏈層次上的能流分析是把每個種群作為能量從生產者到頂極消費者移動過程中的一個環節,當能量沿著一個食物鏈在幾個物種間流動時,測定食物鏈每一個環節上的能量值,就可提供生態系統內一系列特定點上能流的詳細和准確資料。實驗種群層次上的能流分析,則是在實驗室內控制各種無關變數,以研究能流過程中影響能量損失和能量儲存的各種重要環境因子。

在這里我們還介紹一下食物鏈、食物網、營養級、生態金字塔等概念。植物所固定的能量通過一系列的取食和被取食關系在生態系統中的傳遞,這種生物之間的傳遞關系稱為食物鏈(food chains)。一般食物鏈是由4~5環節構成的,如草→昆蟲→鳥→蛇→鷹。但在生態系統中生物之間的取食和被取食的關系錯綜復雜,這種聯系象是一個無形的網把所有生物都包括在內,使它們彼此之間都有著某種直接或間接的關系,這就是食物網(food web)。一般而言,食物網越復雜,生態系統抵抗外力干擾的能力就越強,反之亦然。在任何生態系統中都存在著兩種最主要的食物鏈,即捕食食物鏈(grazing food chain)和碎屑食物鏈(detrital food chain),前者是以活的動植物為起點的食物鏈,後者則以死生物或腐屑為起點。在大多數陸地和淺水生態系統中,腐屑食物鏈是最主要的,如一個楊樹林的植物生物量除6%是被動物取食處,其餘94%都是在枯死凋落後被分解者所分解。一個營養級(trophic levels)是指處於食物鏈某一環節上的所有生物種群的總和,在對生態系統的能流進行分析時,為了方便,常把每一生物種群置於一個確定的營養級上。生產者屬第一營養級,植食動物屬第二營養級,第三營養級包括所有以植食動物為食的肉食動物,一般一個生態系統的營養級數目為3~5個。生態金字塔(ecological pyramids)是指各個營養級之間的數量關系,這種數量關系可採用生物量單位、能量單位和個體數量單位,分別構成生物量金字塔、能量金字塔和數量金字塔。

7. 生態系統中的物質循環

生態系統的物質循環(circulation of materials)又稱為生物地球化學循環(biogeochemical cycle),是指地球上各種化學元素,從周圍的環境到生物體,再從生物體回到周圍環境的周期性循環。能量流動和物質循環是生態系統的兩個基本過程,它們使生態系統各個營養級之間和各種組成成分之間組織為一個完整的功能單位。但是能量流動和物質循環的性質不同,能量流經生態系統最終以熱的形式消散,能量流動是單方向的,因此生態系統必須不斷地從外界獲得能量;而物質的流動是循環式的,各種物質都能以可被植物利用的形式重返環境。同時兩者又是密切相關不可分割的。

生物地球化學循環可以用庫和流通率兩個概念加以描述。庫(pools)是由存在於生態系統某些生物或非生物成分中一定數量的某種化學物質所構成的。這些庫藉助於有關物質在庫與庫之間的轉移而彼此相互聯系,物質在生態系統單位面積(或體積)和單位時間的移動量就稱為流通率(flux rates)。一個庫的流通率(單位/天)和該庫中的營養物質總量之比即周轉率(turnover rates),周轉率的倒數為周轉時間(turnover times)。

生物地球化學循環可分為三大類型,即水循環(water cycles)、氣體型循環(gaseous cycles)和沉積型循環(sedimentary cycles)。水循環的主要路線是從地球表面通過蒸發進入大氣圈,同時又不斷從大氣圈通過降水而回到地球表面,H和O主要通過水循環參與生物地化循環。在氣體型循環中,物質的主要儲存庫是大氣和海洋,其循環與大氣和海洋密切相關,具有明顯的全球性,循環性能最為完善。屬於氣體型循環的物質有O2、CO2、N、Cl、Br、F等。參與沉積型循環的物質,主要是通過岩石風化和沉積物的分解轉變為可被生態系統利用的物質,它們的主要儲存庫是土壤、沉積物和岩石,循環的全球性不如氣體型循環明顯,循環性能一般也很不完善。屬於沉積性循環的物質有P、K、Na、Ca、Ng、Fe、Mn、I、Cu、Si、Zn、Mo等,其中P是較典型的沉積型循環元素。氣體型循環和沉積型循環都受到能流的驅動,並都依賴於水循環。

生物地化循環是一種開放的循環,其時間跨度較大。對生態系統來說,還有一種在系統內部土壤、空氣和生物之間進行的元素的周期性循環,稱生物循環(biocycles)。養分元素的生物循環又稱為養分循環(nutrient cycling),它一般包括以下幾個過程:吸收(absorption),即養分從土壤轉移至植被;存留(retention),指養分在動植物群落中的滯留;歸還(return),即養分從動植物群落回歸至地表的過程,主要以死殘落物、降水淋溶、根系分泌物等形式完成;釋放(release),指養分通過分解過程釋放出來,同時在地表有一積累(accumulation)過程;儲存(reserve),即養分在土壤中的貯存,土壤是養分庫,除N外的養分元素均來自土壤。其中,吸收量=存留量+歸還量。
生物圈的相關知識

❺ 生態系統中腐殖質總量積累速度最快最大的是熱帶雨林。最慢的是凍土苔原。腐殖質是什麼東西

植物的枯枝落葉形成的腐敗變質的有機物。

❻ 生態系統的初級生產效率

生態系統初級生產效率是指初級生產過程圍繞生態系、群落、種群、個體等的物質、能量的轉移效率。
從20世紀40年代以來,對各生態系統的初級生產效率所作的大量研究表明,在自然條件下,總初級生產效率很難超過3%,雖然人類精心管理的農業生態系統中曾經有過6%—8%的記錄;一般說來,在富饒肥沃的地區總初級生產效率可以達到1%—2%;而在貧瘠荒涼的地區大約只有0.1%。就全球平均來說,大概是0.2%—0.5%。
生態系統中的能量流動開始於綠色植物的光合作用對太陽能的固定。因為綠色植物固定太陽能是生態系統中第一次能量固定,所以植物所固定的太陽能或所製造的有機物質就稱為初級生產量或第一性生產量。 GMsIasNXkA
在初級生產過程中,植物所固定的能量有一部分是被植物自己的呼吸消耗掉了(呼吸過程和光合作用過程是兩個完全相反的過程),剩下的部分才以可見有機物質的形式用於植物的生長和生殖,這部分生產量稱為凈初級生產量,而包括呼吸消耗在內的全部生產量稱為總初級生產量。從總初級生產量(GP)中減去植物呼吸所消耗的能量(R)就是凈初級生產量(NP)。
凈生產量用於植物的生長和生殖,因此隨著時間的推移,植物逐漸長大,數量逐漸增多,而構成植物體的有機物質(包括根、莖、葉、花、果實等)也就越積越多。逐漸累積下來的這些凈生產量,一部分可能隨著季節的變化而被分解了,另一部分則以生活有機質的形式長期積存在生態系統之中。在某一特定時刻調查時,生態系統單位面積內所積存的這些生活有機質就叫生物量。可見,生物量實際上就是凈生產量的累積量,某一時刻的生物量就是在此時刻以前生態系統所累積下來的活有機質總量。生物量的單位通常是用平均每平方米生物體的乾重(g,m)或平均每平方米生物體的熱值(J,m)來表示。
生產量和生物量是兩個完全不同的概念,生產量含有速率的概念,是指單位時間單位面積上的有機物質生產量,而生物量是指在某一特定時刻調查時單位面積上積存的有機物質。 zvpgeqJ1hk
對生態系統中某一營養級來說,總生物量不僅因生物呼吸而消耗,也由於受更高營養級動物的取食和生物的死亡而減少。一般說來,在生態系統演替過程中,通常凈生產量中除去被動物取食和死亡的一部分,其餘則轉化為生物量,因此生物量將隨時間推移而漸漸增加,表現為生物量的增長。當生態系統的演替達到頂極狀態時,生物量便不再增長,保持一種動態平衡。 1nowfTG4KI
生態系統發展到成熟階段時,雖然生物量最大,但對人的潛在收獲量卻最小(即凈生產量最小)。可見,生物量和生產量之間存在著一定的關系,生物量的大小對生產量有某種影響,當生物量很小時如樹木稀疏的森林和魚數不多的池塘,就不能充分利用可利用的資源和能量進行生產,生產量當然不會高。以一個池塘為例,如果池塘里有適量的魚,其底棲魚餌動物的年生產量幾乎可達其生物量的17倍之多;如果池塘里沒有魚,底棲魚餌動物的生產量就會大大下降,但其生物量則會維持在較高的水平上。可見,在有魚存在時,底棲魚餌動物的生物量雖然因魚的捕食而被壓低,但生產量卻增加了。了解和掌握生物量和生產量之間的關系,對於決定森林的砍伐期和砍伐量,經濟動物的狩獵時機和捕獲量,魚類的捕撈時間和魚獲量都具有重要的指導意義。 tfnNhnE初級生產量的限制因素: 光、二氧化碳、水和營養物質是初級生產量的基本資源,溫度是影響光合效率的主要因素。

❼ 生態系統的成分

2.生態系統的組成成分
生態系統有四個主要的組成成分。即非生物環境、生產者、消費者和分解者
詳細見以下內容:
1.生態系統的概念
生態系統(ecosystem)是英國生態學家Tansley於1935年首先提上來的,指在一定的空間內生物成分和非生物成分通過物質循環和能量流動相互作用、相互依存而構成的一個生態學功能單位。它把生物及其非生物環境看成是互相影響、彼此依存的統一整體。生態系統不論是自然的還是人工的,都具下列共同特性:(1)生態系統是生態學上的一個主要結構和功能單位,屬於生態學研究的最高層次。(2)生態系統內部具有自我調節能力。其結構越復雜,物種數越多,自我調節能力越強。(3)能量流動、物質循環是生態系統的兩大功能。(4)生態系統營養級的數目因生產者固定能值所限及能流過程中能量的損失,一般不超過5~6個。(5)生態系統是一個動態系統,要經歷一個從簡單到復雜、從不成熟到成熟的發育過程。
生態系統概念的提出為生態學的研究和發展奠定了新的基礎,極大地推動了生態學的發展。生態系統生態學是當代生態學研究的前沿。
2.生態系統的組成成分
生態系統有四個主要的組成成分。即非生物環境、生產者、消費者和分解者。
(1)非生物環境包括:氣候因子,如光、溫度、濕度、風、雨雪等;無機物質,如C、H、O、N、CO2及各種無機鹽等。有機物質,如蛋白質、碳水化合物、脂類和腐殖質等。
(2)生產者(procers)主要指綠色植物,也包括藍綠藻和一些光合細菌,是能利用簡單的無機物質製造食物的自養生物。在生態系統中起主導作用。
(3)消費者(consumers)異養生物,主要指以其他生物為食的各種動物,包括植食動物、肉食動物、雜食動物和寄生動物等。
(4)分解者(decomposers)異養生物,主要是細菌和真菌,也包括某些原生動物和蚯蚓、白蟻、禿鷲等大型腐食性動物。它們分解動植物的殘體、糞便和各種復雜的有機化合物,吸收某些分解產物,最終能將有機物分解為簡單的無機物,而這些無機物參與物質循環後可被自養生物重新利用。
3.生態系統的結構
生態系統的結構可以從兩個方面理解。其一是形態結構,如生物種類,種群數量,種群的空間格局,種群的時間變化,以及群落的垂直和水平結構等。形態結構與植物群落的結構特徵相一致,外加土壤、大氣中非生物成分以及消費者、分解者的形態結構。其二為營養結構,營養結構是以營養為紐帶,把生物和非生物緊密結合起來的功能單位,構成以生產者、消費者和分解者為中心的三大功能類群,它們與環境之間發生密切的物質循環和能量流動。
4.生態系統的初級生產和次級生產
生態系統中的能量流動開始於綠色植物的光合作用。光合作用積累的能量是進入生態系統的初級能量,這種能量的積累過程就是初級生產。初級生產積累能量的速率稱為初級生產力(primaryproctivity),所製造的有機物質則稱為初級生產量或第一性生產量(primaryproction)。
在初級生產量中,有一部分被植物自己的呼吸所消耗,剩下的部分才以可見有機物質的形式用於植物的生長和生殖,我們稱這部分生產量為凈初級生產量(netprimaryproction,NPP),而包括呼吸消耗的能量(R)在內的全部生產量稱為總初級生產量(grossprimaryproction,GPP)。它們三者之間的關系是GPP=NPP+R。GPP和NPP通常用每年每平方米所生產的有機物質乾重(g/m2.a)或固定的能量值(J/m2.a)來表示,此時它們稱為總(凈)初級生產力,生產力是率的概念,而生產量是量的概念。
某一特定時刻生態系統單位面積內所積存的生活有機物質量叫生物量(biomass)。生物量是凈生產量的積累量,某一時刻的生物量就是以往生態系統所累積下來的活有機物質總量。生物量通常用平均每平方米生物體的乾重(g/m2)或能值(J/m2)來表示。生物量和生產量是兩個不同的概念,前者是生態系統結構的概念,而後者則是功能上的概念。如果GP-R>O,生物量增加;GP-R<O,生物量減少;GP=R,則生物量不變,其中的GP代表某一營養級的生產量。某一時期內某一營養級生物量的變化(dB/dt)可用下式推算:dB/dt=GP-R-H-D,式中H代表被下一營養級所取食的生物量,D為死亡所損失的生物量。生物量在生態系統中具明顯的垂直分布現象。
次級生產是除生產者外的其它有機體的生產,即消費者和分解者利用初級生產量進行同化作用,表現為動物和其它異養生物生長、繁殖和營養物質的貯存。動物和其它異養生物靠消耗植物的初級生產量製造的有機物質或固定的能量,稱為次級生產量或第二性生產量(secondaryproction),其生產或固定率稱次級(第二性)生產力(secondaryproctivity)。動物的次級生產量可由下一公式表示:P=C-FU-R,式中,P為次級生產量,C代表動物從外界攝取的能量,FU代表以糞、尿形式損失的能量,R代表呼吸過程中損失的能量。
5.生態系統中的分解
生態系統的分解(或稱分解作用)(decomposition)是指死有機物質的逐步降解過程。分解時,無機元素從有機物質中釋放出來,得到礦化,與光合作用時無機元素的固定正好是相反的過程。從能量的角度看,前者是放能,後者是貯能。從物質的角度看,它們均是物質循環的調節器,分解的過程其實十分復雜,它包括物理粉碎、碎化、化學和生物降解、淋失、動物採食、風的轉移及有時的人類干擾等幾乎同步的各種作用。將之簡單化,可看作是碎裂、異化和淋溶三個過程的綜合。由於物理的和生物的作用,把死殘落物分解為顆粒狀的碎屑稱為碎裂;有機物質在酶的作用下分解,從聚合體變成單體,例如由纖維素變成葡萄糖,進而成為礦物成分,稱為異化;淋溶則是可溶性物質被水淋洗出來,是一種純物理過程。分解過程中,這三個過程是交叉進行、相互影響的。
分解過程的速率和特點,決定於資源的質量、分解者種類和理化環境條件三方面。資源質量包括物理性質和化學性質,物理性質包括表面特性和機械結構,化學性質如C:N比、木質素、纖維素含量等,它們在分解過程中均起重要作用。分解者則包括細菌、真菌和土壤動物(水生態系統中為水生小型動物)。理化環境主要指溫度、濕度等。
6.生態系統中的能量流動
能量是生態系統的基礎,一切生命都存在著能量的流動和轉化。沒有能量的流動,就沒有生命和生態系統。流量流動是生態系統的重要功能之一,能量的流動和轉化是服從於熱力學第一定律和第二定律的,因為熱力學就是研究能量傳遞規律和能量形式轉換規律的科學。
能量流動可在生態系統、食物鏈和種群三個水平上進行分析。生態系統水平上的能流分析,是以同一營養級上各個種群的總量來估計,即把每個種群都歸屬於一個特定的營養級中(依據其主要食性),然後精確地測定每個營養級能量的輸入和輸出值。這種分析多見於水生生態系統,因其邊界明確、封閉性較強、內環境較穩定。食物鏈層次上的能流分析是把每個種群作為能量從生產者到頂極消費者移動過程中的一個環節,當能量沿著一個食物鏈在幾個物種間流動時,測定食物鏈每一個環節上的能量值,就可提供生態系統內一系列特定點上能流的詳細和准確資料。實驗種群層次上的能流分析,則是在實驗室內控制各種無關變數,以研究能流過程中影響能量損失和能量儲存的各種重要環境因子。
在這里我們還介紹一下食物鏈、食物網、營養級、生態金字塔等概念。植物所固定的能量通過一系列的取食和被取食關系在生態系統中的傳遞,這種生物之間的傳遞關系稱為食物鏈(foodchains)。一般食物鏈是由4~5環節構成的,如草→昆蟲→鳥→蛇→鷹。但在生態系統中生物之間的取食和被取食的關系錯綜復雜,這種聯系象是一個無形的網把所有生物都包括在內,使它們彼此之間都有著某種直接或間接的關系,這就是食物網(foodweb)。一般而言,食物網越復雜,生態系統抵抗外力干擾的能力就越強,反之亦然。在任何生態系統中都存在著兩種最主要的食物鏈,即捕食食物鏈(grazingfoodchain)和碎屑食物鏈(detritalfoodchain),前者是以活的動植物為起點的食物鏈,後者則以死生物或腐屑為起點。在大多數陸地和淺水生態系統中,腐屑食物鏈是最主要的,如一個楊樹林的植物生物量除6%是被動物取食處,其餘94%都是在枯死凋落後被分解者所分解。一個營養級(trophiclevels)是指處於食物鏈某一環節上的所有生物種群的總和,在對生態系統的能流進行分析時,為了方便,常把每一生物種群置於一個確定的營養級上。生產者屬第一營養級,植食動物屬第二營養級,第三營養級包括所有以植食動物為食的肉食動物,一般一個生態系統的營養級數目為3~5個。生態金字塔(ecologicalpyramids)是指各個營養級之間的數量關系,這種數量關系可採用生物量單位、能量單位和個體數量單位,分別構成生物量金字塔、能量金字塔和數量金字塔。
7.生態系統中的物質循環
生態系統的物質循環(circulationofmaterials)又稱為生物地球化學循環(biogeochemicalcycle),是指地球上各種化學元素,從周圍的環境到生物體,再從生物體回到周圍環境的周期性循環。能量流動和物質循環是生態系統的兩個基本過程,它們使生態系統各個營養級之間和各種組成成分之間組織為一個完整的功能單位。但是能量流動和物質循環的性質不同,能量流經生態系統最終以熱的形式消散,能量流動是單方向的,因此生態系統必須不斷地從外界獲得能量;而物質的流動是循環式的,各種物質都能以可被植物利用的形式重返環境。同時兩者又是密切相關不可分割的。
生物地球化學循環可以用庫和流通率兩個概念加以描述。庫(pools)是由存在於生態系統某些生物或非生物成分中一定數量的某種化學物質所構成的。這些庫藉助於有關物質在庫與庫之間的轉移而彼此相互聯系,物質在生態系統單位面積(或體積)和單位時間的移動量就稱為流通率(fluxrates)。一個庫的流通率(單位/天)和該庫中的營養物質總量之比即周轉率(turnoverrates),周轉率的倒數為周轉時間(turnovertimes)。
生物地球化學循環可分為三大類型,即水循環(watercycles)、氣體型循環(gaseouscycles)和沉積型循環(sedimentarycycles)。水循環的主要路線是從地球表面通過蒸發進入大氣圈,同時又不斷從大氣圈通過降水而回到地球表面,H和O主要通過水循環參與生物地化循環。在氣體型循環中,物質的主要儲存庫是大氣和海洋,其循環與大氣和海洋密切相關,具有明顯的全球性,循環性能最為完善。屬於氣體型循環的物質有O2、CO2、N、Cl、Br、F等。參與沉積型循環的物質,主要是通過岩石風化和沉積物的分解轉變為可被生態系統利用的物質,它們的主要儲存庫是土壤、沉積物和岩石,循環的全球性不如氣體型循環明顯,循環性能一般也很不完善。屬於沉積性循環的物質有P、K、Na、Ca、Ng、Fe、Mn、I、Cu、Si、Zn、Mo等,其中P是較典型的沉積型循環元素。氣體型循環和沉積型循環都受到能流的驅動,並都依賴於水循環。
生物地化循環是一種開放的循環,其時間跨度較大。對生態系統來說,還有一種在系統內部土壤、空氣和生物之間進行的元素的周期性循環,稱生物循環(biocycles)。養分元素的生物循環又稱為養分循環(nutrientcycling),它一般包括以下幾個過程:吸收(absorption),即養分從土壤轉移至植被;存留(retention),指養分在動植物群落中的滯留;歸還(return),即養分從動植物群落回歸至地表的過程,主要以死殘落物、降水淋溶、根系分泌物等形式完成;釋放(release),指養分通過分解過程釋放出來,同時在地表有一積累(accumulation)過程;儲存(reserve),即養分在土壤中的貯存,土壤是養分庫,除N外的養分元素均來自土壤。其中,吸收量=存留量+歸還量。
生物圈的相關知識
生物圈的概念,以下幾點是公認的:①地球上凡是生物分布的區域都屬於生物圈;②生物圈是由生物與非生物環境組成的具有一定結構和功能的統一整體,是高度復雜而有序的系統,而不是鬆散無序的集合;③由於生物種類的遷移性與無機環境的連續性使其結構和功能不斷變化,並且不斷趨於相對穩定的狀態。地球上最大的生態系統是生物圈,陸地上最大的生態系統是森林生態系統,我國最大的生態系統是草原生態系統

❽ 荒漠生態系統中物質循環速率非常緩慢請從生態系統生物成分的角度說明理由急

您好抄,對於你的遇到的問題,我很高興能為你提供幫助,我之前也遇到過喲,以下是我的個人看法,希望能幫助到你,若有錯誤,還望見諒!。生態系統中各種生物的數量和所佔的比例是相對穩定的狀態.這種平衡是一種動態平衡,之所以會出現這種平衡是因為生態系統具有一定的自我調節能力,由於這種能力與生態系統中生物的種類和數量有關,生物的種類和數量越多,營養結構越復雜,這種能力就越強,反之,就越弱;因此生態系統的成分越復雜,其自動調節能力就越越強.非常感謝您的耐心觀看,如有幫助請採納,祝生活愉快!謝謝!

❾ 生態系統具有信息傳遞的功能,因此它可以()A.提高生態系統中物質循環速率B.調節種間關系,維持生

A、物質循環是生物群落與無機環境之間的循環,也就是從無機物如二氧化碳、水、無機鹽→有機物→二氧化碳、水、無機鹽→有機物的過程;消費者的營養級越多,物質循環越慢,而信息傳遞確把食物鏈在延長,因而信息傳遞不利於物質循環,A錯誤;
B、調節種間關系,維持生態系統的穩定,是生態系統信息傳遞的作用之一,B正確;
C、生態系統具有信息傳遞的功能不能定向使生物進化,而自然選擇決定生物進化的方向,C錯誤;
D、生態系統具有信息傳遞不能提高生態系統中能量的傳遞效率,要提高能量的傳遞效率需減少消費者的級數,D錯誤.
故選:B

熱點內容
網卡了的原因 發布:2021-03-16 21:18:20 瀏覽:602
聯通客服工作怎麼樣 發布:2021-03-16 21:17:49 瀏覽:218
路由器畫圖 發布:2021-03-16 21:17:21 瀏覽:403
大網卡收費 發布:2021-03-16 21:16:50 瀏覽:113
路由器免費送 發布:2021-03-16 21:16:19 瀏覽:985
孝昌營業廳 發布:2021-03-16 21:15:54 瀏覽:861
網速增速代碼 發布:2021-03-16 21:15:29 瀏覽:194
怎麼黑光纖 發布:2021-03-16 21:14:54 瀏覽:901
埠增大 發布:2021-03-16 21:14:20 瀏覽:709
開機沒信號是什麼原因 發布:2021-03-16 21:13:45 瀏覽:645