當前位置:首頁 » 有線網路 » 光纖生產注意

光纖生產注意

發布時間: 2021-02-11 23:05:02

光纖光纜製造工藝方面有什麼要注意的地方

1969年Jone和Hao採用SiCl4氣相氧化法製成的光纖的損耗低至10dB/km,而且摻雜劑都是採用純的TiO2、GeO2、B2O3及P2O5,這是MCVD法的原型,後來發展成為現在的MCVD所採用的SiCl4、GeCl4等液態的原材料。原料在高溫下發生氧化反應生成SiO2、B2O3、GeO2、P2O5微粉,沉積在石英反應管的內壁上。在沉積過程中需要精密地控制摻雜劑的流量,從而獲得所設計的折射率分布。採用MCVD法制備的B/Ge共摻雜光纖作為光纖的內包層,能夠抑制包層中的模式耦合,大大降低光纖的傳輸損耗。MCVD法是目前制備高質量石英光纖比較穩定可靠的方法,該法制備的單模光纖損耗可達到0.2-0.3dB/km,而且具有很好的重復性。光纖光纜等相關的最好用達標的,我們一般用菲尼特的。

② 雙芯的光纜在生產應該注意什麼

光纖傳輸具有傳輸頻帶寬、通信容量大、損耗低、不受電磁干擾、光纜直徑小、版重量輕、原材料來源豐富等優權點,因而正成為新的傳輸媒介。光在光纖中傳輸時會產生損耗,這種損耗主要是由光纖自身的傳輸損耗和光纖接頭處的熔接損耗組成。光纜一經定購,其光纖自身的傳輸損耗也基本確定,而光纖接頭處的熔接損耗則與光纖的本身及現場施工有關。努力降低光纖接頭處的熔接損耗,則可增大光纖中繼放大傳輸距離和提高光纖鏈路的衰減裕量。影響光纖熔接損耗的主要因素響光纖熔接損耗的因素較多,大體可分為光纖本徵因素和非本徵因素兩類。光纖本徵因素是指光纖自身因素,主要有四點。
光纖模場直徑不一致;兩根光纖芯徑失配;芯截面不圓;纖芯與包層同心度不佳。其中光纖模場直徑不一致影響最大,按CCITT(國際電報電話咨詢委員會)建議,單模光纖的容限標准如下:

③ 光纖選擇應注意哪些問題

對應頻率、損耗大小、使用環境、售後服務,大致的這些了。雲光電信

④ 光纖敷設時,需要注意哪些問題

1) 光纜施工要嚴格按照施工的規范進行;
2)
光纜轉彎時,其轉彎半徑要回大於光纜自身直徑答的15-20倍,如架空光纜在上下桿塔時,應當盡量減小彎曲的角度,同時給光纜盤施加助力,減少光纜的防線張力;
3) 光纜布放前,應對施工及相關人員就施工應注意的事項進行適當的培訓,如放線方法要領和安全等內容,並確保施工人員服從指揮;
4) 應安排相關人員分布在光纜盤放線處、穿越障礙點、地形拐彎處等處,以便及時發現問題,排除故障,控制放線中的速度,並減小放線盤的張力;
5) 光纜布放過程如遇到障礙,應停止拖放,及時排除。不能用大力拖過,否則會造成光纜損傷;
6) 光纜放線時,張力要穩定,不能超過光纜標準的要求拉力。
7)
光纜在受到大張力,以小角度通過彎曲半徑很小的滑輪或有稜角的堅硬表面時,會使光纜局部受到遠大於額定值的側壓力,使光纜內部結構受到破壞,嚴重時造成斷纖。
8) 光纜的施工單位應不斷總結經驗,努力提高施工質量,預防類似施工事故的發生。

⑤ 光纖的生產過程(分哪幾個步驟)

原料在高溫下發生氧化反應生成SiO2、B2O3、GeO2、P2O5微粉,沉積在石英反應管的內壁上。在沉積過程中需要精密地控制摻雜劑的流量,從而獲得所設計的折射率分布。採用MCVD法制備的B/Ge共摻雜光纖作為光纖的內包層,能夠抑制包層中的模式耦合,大大降低光纖的傳輸損耗。MCVD法是目前制備高質量石英光纖比較穩定可靠的方法,該法制備的單模光纖損耗可達到0.2-0.3dB/km,而且具有很好的重復性。 OVD法又為「管外汽相氧化法」或「粉塵法」,其原料在氫氧焰中水解生成SiO2微粉,然後經噴燈噴出,沉積在由石英、石墨或氧化鋁材料製成的「母棒」外表面,經過多次沉積,去掉母棒,再將中空的預制律在高溫下脫水,燒結成透明的實心玻璃棒,即為光纖預制棒。該法的優點是沉積速度快,適合批量生產,該法要求環境清潔,嚴格脫水,可以製得0.16dB/km(1.55μm)的單模光纖,幾乎接近石英光纖在1.55μm窗口的理論極限損耗0.15dB/km。 VAD法是由日本開發出來的,其工作原理與OVD相同,不同之處在於它不是在母棒的外表面沉積,而是在其端部(軸向)沉積。VAD的重要特點是可以連續生產,適合製造大型預制棒,從而可以拉制較長的連續光纖。而且,該法制備的多模光纖不會形成中心部位折射率凹陷或空眼,因此其光纖製品的帶寬比MCVD法高一些,其單模光纖損耗目前達到0.22-0.4dB/km。目前,日本仍然掌握著VAD的最先進的核心技術,所製得的光纖預制棒OH-含量非常低,在1385nm附近的損耗小於0.46dB/km。 PCVD法是由菲利普研究實驗室提出的,於1978年應用於批量生產。它與MCVD的工作原理基本相同,只是不用氫氧焰進行管外加熱,而是改用微波腔體產生的等離子體加熱。 PCVD工藝的沉積溫度低於MCVD工藝的沉積溫度,因此反應管不易變形;由於氣體電離不受反應管熱容量的限制,所以微波加熱腔體可以沿著反應管軸向作快速往復移動,目前的移動速度在8m/min,這允許在管內沉積數千個薄層,從而使每層的沉積厚度減小,因此折射率分布的控制更為精確,可以獲得更寬的帶寬。而且,PCVD的沉積效率高,沉積速度快,有利於消除SiO2層沉積過程中的微觀不均勻性,從而大大降低光纖中散射造成的本徵損耗,適合制備復雜折射率剖面的光纖,可以批量生產,有利於降低成本。目前,荷蘭的等離子光纖公司占據世界領先水平。 此外,在光纖製造過程中應採取措施從幾何尺寸和光學上嚴格控制非圓度,優化折射率差,並採用三包層結構,從而減少偏振模色散(PMD)。另外,Shigeki Sakaguchi等研究了光纖中的瑞利散射損耗與Tf的關系,實驗證實對光纖進行熱處理可以降低微觀不均勻性,減少瑞利散射損耗。 聚合物光纖的制備方法之一就是預制棒拉纖法,制備聚合物光纖預制棒的方法通常有:光共聚法、兩步共聚法和界面凝膠法,其中界面凝膠法制備預制棒的技術最為成熟。利用不同折射率的單體的擴散速度不同,反就時的不同單體的競聚率不同以及自動加速凝膠效應,使其折射率形成梯度,這樣製造出的漸變折射率型的光纖預制棒具有折射率分布可控,而且分布均勻的優點,是目前研究的熱點。

⑥ 光纖怎麼生產

用於制備光纖預制棒的方法主要採用以下四種方法:改進化學汽相沉積法(MCVD),外部汽相沉積法(OVD),汽相軸向沉積法(VAD)和等離子體化學汽相沉積法(PCVD)。

1969年Jone和Hao採用SiCl4氣相氧化法製成的光纖的損耗低至10dB/km,而且摻雜劑都是採用純的TiO2、GeO2、B2O3及P2O5,這是MCVD法的原型,後來發展成為現在的MCVD所採用的SiCl4、GeCl4等液態的原材料。原料在高溫下發生氧化反應生成SiO2、B2O3、GeO2、P2O5微粉,沉積在石英反應管的內壁上。在沉積過程中需要精密地控制摻雜劑的流量,從而獲得所設計的折射率分布。採用MCVD法制備的B/Ge共摻雜光纖作為光纖的內包層,能夠抑制包層中的模式耦合,大大降低光纖的傳輸損耗。MCVD法是目前制備高質量石英光纖比較穩定可靠的方法,該法制備的單模光纖損耗可達到0.2-0.3dB/km,而且具有很好的重復性。

OVD法又為「管外汽相氧化法」或「粉塵法」,其原料在氫氧焰中水解生成SiO2微粉,然後經噴燈噴出,沉積在由石英、石墨或氧化鋁材料製成的「母棒」外表面,經過多次沉積,去掉母棒,再將中空的預制律在高溫下脫水,燒結成透明的實心玻璃棒,即為光纖預制棒。該法的優點是沉積速度快,適合批量生產,該法要求環境清潔,嚴格脫水,可以製得0.16dB/km(1.55μm)的單模光纖,幾乎接近石英光纖在1.55μm窗口的理論極限損耗0.15dB/km。

VAD法是由日本開發出來的,其工作原理與OVD相同,不同之處在於它不是在母棒的外表面沉積,而是在其端部(軸向)沉積。VAD的重要特點是可以連續生產,適合製造大型預制棒,從而可以拉制較長的連續光纖。而且,該法制備的多模光纖不會形成中心部位折射率凹陷或空眼,因此其光纖製品的帶寬比MCVD法高一些,其單模光纖損耗目前達到0.22-0.4dB/km。目前,日本仍然掌握著VAD的最先進的核心技術,所製得的光纖預制棒OH-含量非常低,在1385nm附近的損耗小於0.46dB/km。

PCVD法是由菲利普研究實驗室提出的,於1978年應用於批量生產。它與MCVD的工作原理基本相同,只是不用氫氧焰進行管外加熱,而是改用微波腔體產生的等離子體加熱。 PCVD工藝的沉積溫度低於MCVD工藝的沉積溫度,因此反應管不易變形;由於氣體電離不受反應管熱容量的限制,所以微波加熱腔體可以沿著反應管軸向作快速往復移動,目前的移動速度在8m/min,這允許在管內沉積數千個薄層,從而使每層的沉積厚度減小,因此折射率分布的控制更為精確,可以獲得更寬的帶寬。而且,PCVD的沉積效率高,沉積速度快,有利於消除SiO2層沉積過程中的微觀不均勻性,從而大大降低光纖中散射造成的本徵損耗,適合制備復雜折射率剖面的光纖,可以批量生產,有利於降低成本。目前,荷蘭的等離子光纖公司占據世界領先水平。

此外,在光纖製造過程中應採取措施從幾何尺寸和光學上嚴格控制非圓度,優化折射率差,並採用三包層結構,從而減少偏振模色散(PMD)。另外,Shigeki Sakaguchi等研究了光纖中的瑞利散射損耗與Tf的關系,實驗證實對光纖進行熱處理可以降低微觀不均勻性,減少瑞利散射損耗。

聚合物光纖的制備方法之一就是預制棒拉纖法,制備聚合物光纖預制棒的方法通常有:光共聚法、兩步共聚法和界面凝膠法,其中界面凝膠法制備預制棒的技術最為成熟。利用不同折射率的單體的擴散速度不同,反就時的不同單體的競聚率不同以及自動加速凝膠效應,使其折射率形成梯度,這樣製造出的漸變折射率型的光纖預制棒具有折射率分布可控,而且分布均勻的優點,是目前研究的熱點。

⑦ 光纖光纜製造工藝方面有什麼要注意的地方

1969年Jone和Hao採用SiCl4氣相氧化法製成的光纖的損耗低至10dB/km,而且摻雜劑都是採用純的TiO2、GeO2、B2O3及P2O5,這是MCVD法的原型,後來發展成為現在的MCVD所採用的SiCl4、GeCl4等液態的原材料 。原料在高溫下發生氧化反應生成SiO2、B2O3、GeO2、P2O5微粉,沉積在石英反應管的內壁上。在沉積過程中需要精密地控制摻雜劑的流量,從而獲得所設計的折射率分布。採用MCVD法制備的B/Ge共摻雜光纖作為光纖的內包層,能夠抑制包層中的模式耦合,大大降低光纖的傳輸損耗。MCVD法是目前制備高質量石英光纖比較穩定可靠的方法,該法制備的單模光纖損耗可達到0.2-0.3dB/km,而且具有很好的重復性。 OVD法又為管外汽相氧化法或粉塵法,其原料在氫氧焰中水解生成SiO2微粉,然後經噴燈噴出,沉積在由石英、石墨或氧化鋁材料製成的母棒外表面,經過多次沉積,去掉母棒,再將中空的預制律在高溫下脫水,燒結成透明的實心玻璃棒,即為光纖預制棒。該法的優點是沉積速度快,適合批量生產,該法要求環境清潔,嚴格脫水,可以製得0.16dB/km(1.55μm)的單模光纖,幾乎接近石英光纖在1.55μm窗口的理論極限損耗0.15dB/km。 VAD法是由日本開發出來的,其工作原理與OVD相同,不同之處在於它不是在母棒的外表面沉積,而是在其端部(軸向)沉積。VAD的重要特點是可以連續生產,適合製造大型預制棒,從而可以拉制較長的連續光纖。而且,該法制備的多模光纖不會形成中心部位折射率凹陷或空眼,因此其光纖製品的帶寬比MCVD法高一些,其單模光纖損耗目前達到0.22-0.4dB/km。目前,日本仍然掌握著VAD的最先進的核心技術,所製得的光纖預制棒OH-含量非常低,在1385nm附近的損耗小於0.46dB/km。 PCVD法是由菲利普研究實驗室提出的,於1978年應用於批量生產。它與MCVD的工作原理基本相同,只是不用氫氧焰進行管外加熱,而是改用微波腔體產生的等離子體加熱。 PCVD工藝的沉積溫度低於MCVD工藝的沉積溫度,因此反應管不易變形;由於氣體電離不受反應管熱容量的限制,所以微波加熱腔體可以沿著反應管軸向作快速往復移動,目前的移動速度在8m/min,這允許在管內沉積數千個薄層,從而使每層的沉積厚度減小,因此折射率分布的控制更為精確,可以獲得更寬的帶寬。而且,PCVD的沉積效率高,沉積速度快,有利於消除SiO2層沉積過程中的微觀不均勻性,從而大大降低光纖中散射造成的本徵損耗,適合制備復雜折射率剖面的光纖,可以批量生產,有利於降低成本。目前,荷蘭的等離子光纖公司占據世界領先水平。 此外,在光纖製造過程中應採取措施從幾何尺寸和光學上嚴格控制非圓度,優化折射率差,並採用三包層結構,從而減少偏振模色散(PMD)。另外,Shigeki Sakaguchi等研究了光纖中的瑞利散射損耗與Tf的關系,實驗證實對光纖進行熱處理可以降低微觀不均勻性,減少瑞利散射損耗。 聚合物光纖的制備方法之一就是預制棒拉纖法,制備聚合物光纖預制棒的方法通常有:光共聚法、兩步共聚法和界面凝膠法,其中界面凝膠法制備預制棒的技術最為成熟。利用不同折射率的單體的擴散速度不同,反就時的不同單體的競聚率不同以及自動加速凝膠效應,使其折射率形成梯度,這樣製造出的漸變折射率型的光纖預制棒具有折射率分布可控,而且分布均勻的優點,是目前研究的熱點。 ③需要雙金屬(鋁包鋼)拉拔變形的理論基礎知識, 模具內壓力對變形的影響。

⑧ 鋪光纖要注意什麼

鋪光纖抄要注意:
1、應該做襲到的是應該由受過嚴格培訓的技術人員去進行光纖的端接和維護。
必須要有很完備的設計和施工圖紙,以便施工和今後檢查方便可靠。施工中要時時注意不要使光纜受到重壓或被堅硬的物體扎傷;
2、牽引力不應超過最大鋪設張力。光纖要轉彎時,其轉彎半徑應大於光纖自身直徑的20倍。光纖穿牆或穿樓層時,要加帶護口的保護用塑料管,並且要用阻燃的填充物將管子填滿。在建築物內也可以預先敷設一定量的塑料管道。
一次布放長度不要太長(一般2KM),布線時應從中間開始向兩邊牽引。
3、當光纖應用於主幹網路時,每個樓層配線間至少要用6芯光纜,高級應用最好能使用12芯光纜。這是從應用、備份和擴容三個方面去考慮的。

4、較長距離的光纖敷設最重要的是選擇一條合適的路徑。這里不一定最短的路徑就是最好的,還要注意土地的使用權,架設的或地埋的可能性等。
在山區、高電壓電網區鋪設時,要注意光纖中金屬物體的可靠接地,一般應每公里有3個接地點,或者就選用非金屬光纖。

⑨ 光纖的生產方法

目前通信中所用的光纖一般是石英光纖。石英的化學名稱叫二氧化硅(SiO2),它和我們日常用來建房子所用的砂子的主要成分是相同的。但是普通的石英材料製成的光纖是不能用於通信的。通信光纖必須由純度極高的材料組成;不過,在主體材料里摻入微量的摻雜劑,可以使纖芯和包層的折射率略有不同,這是有利於通信的。
製造光纖的方法很多,目前主要有:管內CVD(化學汽相沉積)法,棒內CVD法,PCVD(等離子體化學汽相沉積)法和VAD(軸向汽相沉積)法。但不論用哪一種方法,都要先在高溫下做成預制棒,然後在高溫爐中加溫軟化,拉成長絲,再進行塗覆、套塑,成為光纖芯線。光纖的製造要求每道工序都要相稱精密,由計算機控制。在製造光纖的過程中,要注重:
①光纖原材料的純度必須很高。
②必須防止雜質污染,以及氣泡混入光纖。
③要准確控制折射率的分布;
④正確控制光纖的結構尺寸;
⑤盡量減小光纖表面的傷痕損害,提高光纖機械強度。 將微孔石英玻璃棒浸入高折射率的添加劑溶液中,得所需折射率分布的斷面結構,再進行拉絲操作,它的工藝比較復雜。在光導纖維通信中還可用內外氣相沉積法等,以保證能製造出光損耗率低的光導纖維。 氣相沉積法 對象 芯棒 外包層 方法 外部化學氣相沉積法
(OVD) 改進的化學氣相沉積法/管內化學氣相沉積法
(MCVD) 軸向化學氣相沉積法
(VAD) 等離子化學氣相沉積法
(PCVD) 套管法 粉末法 等離子噴塗法 溶膠-凝膠 反應
機理 火焰水解 高溫氧化 火焰水解 低溫氧化 VAD制芯棒
OVD沉積外包層 熱源 甲烷或氫氧焰 氫氧焰 氫氧焰 等離子體 沉積
方向 靶棒外徑向 管內表面 靶同軸向 管內表面 沉積
速率 大 中 大 小 沉積
工藝 間歇 間歇 連續 間歇 預制棒
尺寸 大 小 大 小 折射率
分布
控制 容易 容易 單模:容易
多模:較難 極易 原料
純度
要求 不嚴格 嚴格 不嚴格 嚴格 研發
企業 1974年美國康寧公司開發
1980年全面投入使用 1974年美國阿爾卡特公司開發 1977年日本NTT公司開發 荷蘭飛利浦公司開發 1995年美國Spectram開發 使用
廠家
(代表) 美國康寧公司
日本西谷公司
中國富通公司 美國阿爾卡特公司
天津46所 日本住友、古河等公司 荷蘭飛利浦公司、中國武漢長飛公司 · · · · · · · · · · · · · · · · · · 光導纖維應用時還要做成光纜,它是由數根光導纖維合並先組成光導纖維芯線,外面被覆塑料皮,再把光導纖維芯線組合成光纜,其中光導纖維的數目可以從幾十到幾百根,最大的達到4000根 冷接法是相對於熱熔接法而言的,指不需要高壓電弧放電來融化光纖,而使用光纖冷接子來將光纖連接起來或將光纖接入到光通訊設備中。

熱點內容
網卡了的原因 發布:2021-03-16 21:18:20 瀏覽:602
聯通客服工作怎麼樣 發布:2021-03-16 21:17:49 瀏覽:218
路由器畫圖 發布:2021-03-16 21:17:21 瀏覽:403
大網卡收費 發布:2021-03-16 21:16:50 瀏覽:113
路由器免費送 發布:2021-03-16 21:16:19 瀏覽:985
孝昌營業廳 發布:2021-03-16 21:15:54 瀏覽:861
網速增速代碼 發布:2021-03-16 21:15:29 瀏覽:194
怎麼黑光纖 發布:2021-03-16 21:14:54 瀏覽:901
埠增大 發布:2021-03-16 21:14:20 瀏覽:709
開機沒信號是什麼原因 發布:2021-03-16 21:13:45 瀏覽:645