光纖歷史
Ⅰ 光纖的起源與發展
光纖是一種將訊息從一端傳送到另一端的媒介.是一條玻璃或塑膠纖維,作為讓訊息通過的傳輸媒介。
通常「光纖」與「光纜」兩個名詞會被混淆.多數光纖在使用前必須由幾層保護結構包覆,包覆後的纜線即被稱為「光纜」.光纖外層的保護結構可防止周遭環境對光纖的傷害,如水,火,電擊等.光纜分為:光纖,緩沖層及披覆.光纖和同軸電纜相似,只是沒有網狀屏蔽層。中心是光傳播的玻璃芯。在多模光纖中,芯的直徑是15μm~50μm, 大致與人的頭發的粗細相當。而單模光纖芯的直徑為8μm~10μm。芯外麵包圍著一層折射率比芯低的玻璃封套, 以使光纖保持在芯內。再外面的是一層薄的塑料外套,用來保護封套。光纖通常被紮成束,外面有外殼保護。 纖芯通常是由石英玻璃製成的橫截面積很小的雙層同心圓柱體,它質地脆,易斷裂,因此需要外加一保護層。
光纖的特性
由於光纖是一種傳輸媒介,它可以像一般銅纜線,傳送電話通話或電腦數據等資料,所不同的是,光纖傳送的是光訊號而非電訊號.因此,光纖具有很多獨特的優點.
如:寬頻寬.低損耗.屏蔽電磁輻射.重量輕.安全性.隱秘性.
光纖系統的運作
你可能知道任何通訊傳輸的過程包括:編碼→傳輸→解碼,當然,光纖系統的傳輸過程也大致相同.電子訊號輸入後,透過傳輸器將訊號數位編碼,成為光訊號,光線透過光纖為媒介,傳送到另一端的接受器,接受器再將訊號解碼,還原成原先的電子訊號輸出.
光纖光纜的運用
光纜的應用區分,可分為3種:專業用途,一般屋外,一般屋內.在專業用途上包括海底光纜,高壓電塔上之空架光纜,核能電廠之抗輻射光纜,化工業之抗腐蝕光纜等.而一般屋內及一般屋外的分類差異,依各型光纜依製造設計時之特質,其所適用之范圍各有不同.
光纜從屋外至屋內的過程中可分為空架,地下道,直接埋設,管道間鋪設,室內用。
光纖的歷史
1880-AlexandraGrahamBell發明光束通話傳輸
1960-電射及光纖之發明
1977-首次實際安裝電話光纖網路
1978-FORT在法國首次安裝其生產之光纖電
1990-區域網路及其他短距離傳輸應用之光纖
2000-到屋邊光纖=>到桌邊光纖
光纖的分類
光纖主要分以下兩大類:
1)傳輸點模數類
傳輸點模數類分單模光纖(Single Mode Fiber)和多模光纖(Multi Mode Fiber)。單模光纖的纖芯直徑很小, 在給定的工作波長上只能以單一模式傳輸,傳輸頻帶寬,傳輸容量大。多模光纖是在給定的工作波長上,能以多個模式同時傳輸的光纖。 與單模光纖相比,多模光纖的傳輸性能較差。
2)折射率分布類
折射率分布類光纖可分為跳變式光纖和漸變式光纖。跳變式光纖纖芯的折射率和保護層的折射率都是一個常數。 在纖芯和保護層的交界面,折射率呈階梯型變化。漸變式光纖纖芯的折射率隨著半徑的增加按一定規律減小, 在纖芯與保護層交界處減小為保護層的折射率。纖芯的折射率的變化近似於拋物線。
Ⅱ 光纖通信的起源
光纖通信技術(optical fiber communications)從光通信中脫穎而出,已成為現代通信的主要支柱之一,在現代電信網中起著舉足輕重的作用。光纖通信作為一門新興技術,其近年來發展速度之快、應用面之廣是通信史上罕見的,也是世界新技術革命的重要標志和未來信息社會中各種信息的主要傳送工具。
光纖通信是以光波作為信息載體,以光纖作為傳輸媒介的一種通信方式。從原理上看,構成光纖通信的基本物質要素是光纖、光源和光檢測器。光纖除了按製造工藝、材料組成以及光學特性進行分類外,在應用中,光纖常按用途進行分類,可分為通信用光纖和感測用光纖。傳輸介質光纖又分為通用與專用兩種,而功能器件光纖則指用於完成光波的放大、整形、分頻、倍頻、調制以及光振盪等功能的光纖,並常以某種功能器件的形式出現。
光纖通信是現代通信網的主要傳輸手段,它的發展歷史只有一二十年,已經歷三代:短波長多模光纖、長波長多模光纖和長波長單模光纖.採用光纖通信是通信史上的重大變革,美、日、英、法等20多個國家已宣布不再建設電纜通信線路,而致力於發展光纖通信.中國光纖通信已進入實用階段.
光纖通信的誕生和發展是電信史上的一次重要革命與衛星通信、移動通信並列為20世紀90年代的技術。進入21世紀後,由於網際網路業務的迅速發展和音頻、視頻、數據、多媒體應用的增長,對大容量(超高速和超長距離)光波傳輸系統和網路有了更為迫切的需求。
光纖通信就是利用光波作為載波來傳送信息,而以光纖作為傳輸介質實現信息傳輸,達到通信目的的一種最新通信技術。
Ⅲ 光纖激光器的發展史
早期對激光器的研製主要集中在研究短脈沖的輸出和可調諧波長范圍的擴展方面。今天,密集波分復用(DWDM)和光時分復用技術的飛速發展及日益進步加速和刺激著多波長光纖激光器技術、超連續光纖激光器等的進步。同時,多波長光纖激光器和超連續光纖激光器的出現,則為低成本地實現Tb/s的DWDM或OTDM傳輸提供理想的解決方案。就其實現的技術途徑來看,採用EDFA放大的自發輻射、飛秒脈沖技術、超發光三極體等技術均見報道。
國內外對於光纖激光器的研究方向和熱點主要集中在高功率光纖激光器、高功率光子晶體光纖激光器、窄線寬可調諧光纖激光器、多波長光纖激光器、非線性效應光纖激光器和超短脈沖光纖激光器等幾個方面。
1962年世界上第一個GaAs半導體激光器問世以來,已有五十餘年的歷史,半導體激光器已廣泛地應用於激光通信、光碟存儲、激光檢測等領域。
隨著半導體激光器連續輸出功率的日益提高,其應用范圍也不斷擴大,其中大功率半導體激光器泵浦的固體激光器(DPSSL)是它最大的應用領域之一。這一技術綜合了半導體激光器與固體激光器的優點,不僅將半導體激光器的波長轉換為固體激光器的波長,而且伴隨光束質量的改善和光譜線寬的壓縮,以及實現脈沖輸出等。半導體激光器體積小、重量輕,直接電子注入具有很高的量子效率,可以通過調整組份和控制溫度得到不同的波長與固體激光材料的吸收波長相匹配,但它本身的光束質量較差,且兩個方向不對稱,橫模特性也不盡理想。而固體激光器的輸出光束質量較高,有很高的時間和空間相乾性,光譜線寬與光束發散角比半導體激光小幾個量級。對於DPSSL,是吸收波長短的高能量光子,轉化為波長較長的低能量光子,這樣總有一部分能量以無輻射躍遷的方式轉換為熱。這部分熱能量將如何從塊狀激光介質中散發、排除成為半導體泵浦固體激光器的關鍵技術。為此,人們開始探索增大散熱面積的方法。
方法之一就是將激光介質做成細長的光纖形狀。
所謂光纖激光器就是用光纖作激光介質的激光器,1964年世界上第一代玻璃激光器就是光纖激光器。由於光纖的纖芯很細,一般的泵浦源(例如氣體放電燈)很難聚焦到芯部。所以在以後的二十餘年中光纖激光器沒有得到很好的發展。隨著半導體激光器泵浦技術的發展,以及光纖通信蓬勃發展的需要,1987年英國南安普頓大學及美國貝爾實驗室實驗證明了摻鉺光纖放大器(EDFA)的可行性。它採用半導體激光光泵摻鉺單模光纖對光信號實現放大,這種EDFA已經成為光纖通信中不可缺少的重要器件。由於要將半導體激光泵浦入單模光纖的纖芯(一般直徑小於10um),要求半導體激光也必須為單模的,這使得單模EDFA難以實現高功率,報道的最高功率也就幾百毫瓦。
為了提高功率,1988年左右有人提出光泵由包層進入。初期的設計是圓形的內包層,但由於圓形內包層完美的對稱性,使得泵浦吸收效率不高,直到九十年代初矩形內包層的出現,使激光轉換效率提高到50%,輸出功率達到5瓦。1999年用四個45瓦的半導體激光器從兩端泵浦,獲得了110瓦的單模連續激光輸出。近兩年,隨著高功率半導體激光器泵浦技術和雙包層光纖製作工藝的發展,光纖激光器的輸出功率逐步提高,採用單根光纖,已經實現了1000瓦的激光輸出。
隨著光纖通信系統的廣泛應用和發展,超快速光電子學、非線性光學、光感測等各種領域應用的研究已得到日益重視。其中,以光纖 作基質的光纖激光器,在降低閾值、振盪波長范圍、波長可調諧性能等方面,已明顯取得進步,是光通信領域的新興技術,它可以用於現有的通信系統,使之支 持更高的傳輸速度,是未來高碼率密集波分復用系統和未來相干光通信的基礎。光纖激光器技術是研究的熱點技術之一。
光纖激光器由於其具有絕對理想的光束質量、超高的轉換效率、完全免維護、高穩定性以及體積小等優點,對傳統的激光行業產生巨大而積極的影響。 最新市場調查顯示:光纖激光器供應商將爭奪固體激光器及其他激光器在若干關鍵應用領域的市場份額,而這些市場份額在未來幾年將穩步看漲。到2010年,光纖激光器將至少佔領工業激光器28億美元市場份額的四分之一。光纖激光器的銷售量將以年增幅愈35%的速度攀升,從2005年的1.4億美元增至2010年的6.8億美元。而同期,工業激光器市場每年增幅僅9%,2010年達到28億美元。
Ⅳ 光纖光學的起源
現在的布線和網路使用了大量的光纖,我一直在想光纖是怎麼誕生的呢?最近我一直在查這方面的資料,今天終於看到了相關的資料,現在拿來和大家分享,讓我們永遠記住他們的名字:高錕(英藉華人)、美國貝爾研究所、美國康寧玻璃公司的馬瑞爾、卡普隆、凱克。下面是相關的資料:
人類從未放棄過對理想光傳輸介質的尋找,經過不懈的努力,人們發現了透明度很高的石英玻璃絲可以傳光。這種玻璃絲叫做光學纖維,簡稱「光纖」。 人們用它製造了在醫療上用的內窺鏡,例如做成胃鏡,可以觀察到距離一米左右的體內情況。但是它的衰減損耗很大,只能傳送很短的距離。光的損耗程度是用每千米的分貝為單位來衡量的。直到20世紀60年代,最好的玻璃纖維的衰減損耗仍在每公里1000分貝以上。每公里1000分貝的損耗是什麼概念呢?每公里10分貝損耗就是輸入的信號傳送1公里後只剩下了十分之一,20分貝就表示只剩下百分之一,30分貝是指只剩千分之一……1000分貝的含意就是只剩下億百分之一,是無論如何也不可能用於通信的。因此,當時有很多科學家和發明家認為用玻璃纖維通信希望渺茫,失去了信心,放棄了光纖通信的研究。
激光器和光纖的發明,使人們看到了光通信的曙光。而要實現光纖通信,還需要在激光器和光纖的性能上有重大的突破。但是在這兩方面的突破遇到了許多困難,尤其是光纖的損耗要達到可用於通信的要求,從每千米損耗1000分貝降低到20分貝似乎不太可能,以致很多科學家對實現光纖通信失去了信心。就在這種情況下,出生於上海的英藉華人高錕(K.C.Kao)博士(光纖之父),通過在英國標准電信實驗室所作的大量研究的基礎上,對光波通信作出了一個大膽的設想。他認為,既然電可以沿著金屬導線傳輸,光也應該可以沿著導光的玻璃纖維傳輸。1966年7月,高錕就光纖傳輸的前景發表了具有重大歷史意義的論文,論文分析了玻璃纖維損耗大的主要原因,大膽地預言,只要能設法降低玻璃纖維的雜質,就有可能使光纖的損耗從每公里1000分貝降低到20分貝/公里,從而有可能用於通信。這篇論文使許多國家的科學家受到鼓舞,加強了為實現低損耗光纖而努力的信心。
世界上第一根低損耗的石英光纖――1970年,美國康寧玻璃公司的三名科研人員馬瑞爾、卡普隆、凱克成功地製成了傳輸損耗每千米只有20分貝的光纖。這是什麼概念呢?用它和玻璃的透明程度比較,光透過玻璃功率損耗一半(相當於3分貝)的長度分別是:普通玻璃為幾厘米、高級光學玻璃最多也只有幾米,而通過每千米損耗為20分貝的光纖的長度可達150米。這就是說,光纖的透明程度已經比玻璃高出了幾百倍!在當時,製成損耗如此之低的光纖可以說是驚人之舉,這標志著光纖用於通信有了現實的可能性。
1970年激光器和低損耗光纖這兩項關鍵技術的重大突破,使光纖通信開始從理想變成可能,這立即引起了各國電信科技人員的重視,他們競相進行研究和實驗。1974年美國貝爾研究所發明了低損耗光纖製作法――CVD法(汽相沉積法),使光纖損耗降低到1分貝/公里;1977年,貝爾研究所和日本電報電話公司幾乎同時研製成功壽命達100萬小時(實用中10年左右)的半導體激光器,從而有了真正實用的激光器。1977年,世界上第一條光纖通信系統在美國芝加哥市投入商用,速率為45Mb/s。
進入實用階段以後,光纖通信的應用發展極為迅速,應用的光纖通信系統已經多次更新換代。70年代的光纖通信系統主要是用多模光纖,應用光纖的短波長(850納米)波段,(1納米=1000兆分之一米,即米)。80年代以後逐漸改用長波長(1310納米),光纖逐漸採用單模光纖,到90年代初,通信容量擴大了50倍,達到2.5Gb/s。進入90年代以後,傳輸波長又從1310納米轉向更長的1550納米波長,並且開始使用光纖放大器、波分復用(WDM)技術等新技術。通信容量和中繼距離繼續成倍增長。廣泛地應用於市內電話中繼和長途通信干線,成為通信線路的骨幹。
Ⅳ 光纜的歷史沿革
1976年,美國貝爾研究所在亞特蘭大建成第一條光纖通信實驗系統,採用了西方電氣公司製造的含有
144根光纖的光纜。1980年,由多模光纖製成的商用光纜開始在市內局間中繼線和少數長途線路上採用。單模光纖製成的商用光纜於1983年開始在長途線路上採用。1988年,連接美國與英法之間的第一條橫跨大西洋海底光纜敷設成功,不久又建成了第一條橫跨太平洋的海底光纜。中國於1978年自行研製出通信光纜,採用的是多模光纖,纜心結構為層絞式。曾先後在上海、北京、武漢等地開展了現場試驗。後不久便在市內電話網內作為局間中繼線試用,1984年以後,逐漸用於長途線路,並開始採用單模光纖。 通信光纜比銅線電纜具有更大的傳輸容量,中繼段距離長、體積小,重量輕,無電磁干擾,自1976年以後已發展成長途干線、市內中繼、近海及跨洋海底通信、以及區域網、專用網等的有線傳輸線路骨幹,並開始向市內用戶環路配線網的領域發展,為光纖到戶、寬頻綜合業務數字網提供傳輸線路。
Ⅵ 光纖是誰發明的
1960年,美國人梅曼發明了紅寶石激光器,使人類獲得了性質與電磁波相同、且頻率和相位都穩定的光——激光,但當時這種激光器還不能在室溫條件下連續工作。
由於激光頻帶寬、純度高、不易擴散,具有很好的方向性,因而很快便在通信領域找到了用武之地。
在光纖的傳輸介質方面,人們發現了透明度很高的石英玻璃絲可以傳播光。這種玻璃絲叫作光學纖維,簡稱光纖。光纖一般由兩層組成,裡面一層稱為內芯,直徑一般為幾十微米或幾微米;外面一層稱為包層。為了使光纖在施工的過程中不易被拉斷,通常把千百根光纖組合在一起進行增強處理,製成像電纜一樣的光纜,這樣既提高了光纖的強度,又使光纖系統的通信容量大大增加。光纖的突出優點,是它可以在同一條通路上進行雙向傳輸,利用這一特性,用戶可以通過交互信息系統與對方對話,這就是我們所說的光纖通信。
光纖通信是運用光反射原理,把光的全反射限制在光纖內部,用光的信號取代傳統通信方式中的電信號。但初期的光纖,光在其中傳輸時損耗很大。因此,要想用它來通信是不可能的。
1966年7月,英國標准電信研究所的英籍華人高錕博士和霍克哈姆就光纖傳輸的前景發表了具有重大歷史意義的論文,論文分析了玻璃纖維損耗大的主要原因,大膽地預言,只要能設法降低玻璃纖維中的雜質,就有可能使光纖損耗從每千米1000分貝降低到每千米20分貝,從而有可能用於通信。這篇論文鼓舞了許多科學家為實現低損耗的光纖而努力。
1970年,美國康寧玻璃公司的卡普隆博士等三人,經過多次的試驗,終於研製出傳輸損耗僅為每千米20分貝的光纖。這樣低損耗的光纖,在當時是驚人的成就,使光纖通信有了實現的可能。
1970年,美國的貝爾研究所研製出能在室溫下連續工作的半導體激光器,這種激光器只有米粒大小。盡管最初的激光器的壽命很短,但這種激光器已被認為是可以作為光纖通信的光源。由於光纖和激光器的重大突破,使光纖通信有了實現的可能,因此,1970年被認為是值得紀念的光纖傳輸元年。
1970年,突破了光纖和激光器兩項技術難題,光纖通信從理想變成可能,各國電信科技人員,競相進行研究和試驗。光纖通信開始進入實用階段,而且此後的發展極為迅速,其應用系統也已經多次更新換代。20世紀70年代的光纖通信系統主要應用光纖的短波波段進行傳輸;80年代以後逐漸改用長波波段;到90年代初,光纖的通信容量擴大了50倍。到了90年代後期,傳輸波波長更長,並且開始使用光纖放大器等新技術以增強信號、擴大傳輸容量。這時,光纖廣泛地應用於市內電話以及長途通信干線中,成為通信線路的骨幹。甚至美、日、英、法等8國已宣布,今後鋪設長途通信干線不再使用電纜而改用光纜。
Ⅶ 什麼是光纖光纖的起源是什麼
光纖是一種將訊息從一端傳送到另一端的媒介.是一條玻璃或塑膠纖維,作為讓訊息通過的傳輸媒介。 通常「光纖」與「光纜」兩個名詞會被混淆.多數光纖在使用前必須由幾層保護結構包覆,包覆後的纜線即被稱為「光纜」.光纖外層的保護結構可防止周遭環境對光纖的傷害,如水,火,電擊等.光纜分為:光纖,緩沖層及披覆.光纖和同軸電纜相似,只是沒有網狀屏蔽層。中心是光傳播的玻璃芯。在多模光纖中,芯的直徑是15μm~50μm, 大致與人的頭發的粗細相當。而單模光纖芯的直徑為8μm~10μm。芯外麵包圍著一層折射率比芯低的玻璃封套, 以使光纖保持在芯內。再外面的是一層薄的塑料外套,用來保護封套。光纖通常被紮成束,外面有外殼保護。 纖芯通常是由石英玻璃製成的橫截面積很小的雙層同心圓柱體,它質地脆,易斷裂,因此需要外加一保護層。 光纖的特性 由於光纖是一種傳輸媒介,它可以像一般銅纜線,傳送電話通話或電腦數據等資料,所不同的是,光纖傳送的是光訊號而非電訊號.因此,光纖具有很多獨特的優點. 如:寬頻寬.低損耗.屏蔽電磁輻射.重量輕.安全性.隱秘性. 光纖系統的運作 你可能知道任何通訊傳輸的過程包括:編碼→傳輸→解碼,當然,光纖系統的傳輸過程也大致相同.電子訊號輸入後,透過傳輸器將訊號數位編碼,成為光訊號,光線透過光纖為媒介,傳送到另一端的接受器,接受器再將訊號解碼,還原成原先的電子訊號輸出. 光纖光纜的運用 光纜的應用區分,可分為3種:專業用途,一般屋外,一般屋內.在專業用途上包括海底光纜,高壓電塔上之空架光纜,核能電廠之抗輻射光纜,化工業之抗腐蝕光纜等.而一般屋內及一般屋外的分類差異,依各型光纜依製造設計時之特質,其所適用之范圍各有不同. 光纜從屋外至屋內的過程中可分為空架,地下道,直接埋設,管道間鋪設,室內用。 光纖的歷史 1880-AlexandraGrahamBell發明光束通話傳輸 1960-電射及光纖之發明 1977-首次實際安裝電話光纖網路 1978-FORT在法國首次安裝其生產之光纖電 1990-區域網路及其他短距離傳輸應用之光纖 2000-到屋邊光纖=>到桌邊光纖 2005 FTTH(Fiber To The Home)光纖直接到家庭 光纖的分類 光纖主要分以下兩大類: 1)傳輸點模數類 傳輸點模數類分單模光纖(Single Mode Fiber)和多模光纖(Multi Mode Fiber)。單模光纖的纖芯直徑很小, 在給定的工作波長上只能以單一模式傳輸,傳輸頻帶寬,傳輸容量大。多模光纖是在給定的工作波長上,能以多個模式同時傳輸的光纖。 與單模光纖相比,多模光纖的傳輸性能較差。 2)折射率分布類 折射率分布類光纖可分為跳變式光纖和漸變式光纖。跳變式光纖纖芯的折射率和保護層的折射率都是一個常數。 在纖芯和保護層的交界面,折射率呈階梯型變化。漸變式光纖纖芯的折射率隨著半徑的增加按一定規律減小, 在纖芯與保護層交界處減小為保護層的折射率。纖芯的折射率的變化近似於拋物線。
Ⅷ 光纖的發展史
1880-AlexandraGrahamBell發明光束通話傳輸光纖。
1960-電射及光纖之發明。
1960-玻璃纖維的傳輸損耗大於1000dB/km,其他材料包括光圈波導、氣體透鏡波導、空心金屬波導管等。
1966-七月,英籍、華裔學者高錕博士(K.C.Kao)在PIEE 雜志上發表論文《光頻率的介質纖維表面波導》,從理論上分析證明了用光纖作為傳輸媒體以實現光通信的可能性,並預言了製造通信用的超低耗光纖的可能性。
1970-美國康寧公司三名科研人員馬瑞爾、卡普隆、凱克用改進型化學相沉積法(MCVD 法)成功研製成傳輸損耗只有20dB/km的低損耗石英光纖。
1970-美國貝爾實驗室研製出世界上第一隻在室溫下連續波工作的砷化鎵鋁半導體激光器。
1972-傳輸損耗降低至4dB/km。
1973-我國郵電部武漢郵電科學研究院開始研究光纖通信。
1974-美國貝爾研究所發明了低損耗光纖製作法――CVD法(汽相沉積法),使光纖傳輸損耗降低到1.1dB/km。
1976-美國在亞特蘭大的貝爾實驗室地下管道開通了世界上第一條光纖通信系統的試驗線路。採用一條擁有144個光纖的光纜以44.736Mbps的速率傳輸信號,中繼距離為10 km。採用的是多模光纖,光源用的是發光管LED,波長是0.85微米的紅外光。
1976-傳輸損耗降低至0.5dB/km。
1977-貝爾研究所和日本電報電話公司幾乎同時研製成功壽命達100萬小時(實用中10年左右)的半導體激光器。
1977-世界上第一條光纖通信系統在美國芝加哥市投入商用,速率為45Mb/s。
1977-首次實際安裝電話光纖網路。
1978-FORT在法國首次安裝其生產之光纖電。
1979-趙梓森拉制出我國自主研發的第一根實用光纖,被譽為「中國光纖之父」。
1979-傳輸損耗降低至0.2dB/km。
1980-多模光纖通信系統商用化(140Mb/s),並著手單模光纖通信系統的現場試驗工作。
1982-我國郵電部重點科研工程「.八二工程」在武漢開通。
1990-單模光纖通信系統進入商用化階段(565Mb/s),並著手進行零色散移位光纖和波分復用及相干通信的現場試驗,而且陸續制定數字同步體系(SDH)的技術標准。
1990-傳輸損耗降低至0.14dB/km,已經接近石英光纖的理論衰耗極限值0.1dB/km。
1990-區域網路及其他短距離傳輸應用之光纖。
1992-貝爾實驗室與日本合作夥伴成功地試驗了可以無錯誤傳輸9000公里的光放大器,其最初速率為5Gbps,隨後增加到10Gbps。
1993-SDH產品開始商用化(622Mb/s 以下)。
1995-2.5Gb/s 的SDH產品進入商用化階段。
1996-10Gb/s 的SDH產品進入商用化階段。
1997-採用波分復用技術(WDM)的20Gb/s 和40Gb/s 的SDH產品試驗取得重大突破。
1999-中國生產的8×2.5Gb/sWDM系統首次在青島至大連開通,沈陽至大連的32×2.5Gb/sWDM光纖通信系統開通。
2000-到屋邊光纖=>到桌邊光纖。
2005-3.2Tbps超大容量的光纖通信系統在上海至杭州開通。
2005 FTTH(Fiber To The Home)光纖直接到家庭。
2012年,中國的光纖產能已達到1億2千萬芯公里,預計到2013年將達到1億8千萬芯公里。
Ⅸ 光纖網路的發展史
光纖的發明,引起了通信技術的一場革命,是構成21世紀即將到來的信息社會的一大要素。
1966年出生在中國上海的英籍華人高錕,發表論文《光頻介質纖維表面波導》,提出用石英玻璃纖維(光纖)傳送光信號來進行通信,可實現長距離、大容量通信。
1970年損失為20db/km的光纖研製出來了。據說康寧公司花費3000萬美元,得到30米光纖樣品,認為非常值得。這一突破,引起整個通信界的震動,世界發達國家開始投入巨大力量研究光纖通信。1976年,美國貝爾實驗室在亞特蘭大到華盛頓間建立了世界第一條實用化的光纖通信線路,速率為45Mb/s,採用的是多模光纖,光源用的是發光管LED,波長是0.85微米的紅外光。在上世紀70年代末,大容量的單模光纖和長壽命的半導體激光器研製成功。光纖通信系統開始顯示出長距離、大容量無比的優越性。 1973年,世界光纖通信尚未實用。郵電部武漢郵電科學研究院(當時是武漢郵電學院)就開始研究光纖通信。由於武漢郵電科學研究院採用了石英光纖、半導體激光器和編碼制式通信機正確的技術路線,使我國在發展光纖通信技術上少走了不少彎路,從而使我國光纖通信在高新技術中與發達國家有較小的差距。
我國研究開發光纖通信正處於十年動亂時期,處於封閉狀態。國外技術基本無法借鑒,純屬自己摸索,一切都要自己搞,包括光纖、光電子器件和光纖通信系統。就研製光纖來說,原料提純、熔煉車床、拉絲機,還包括光纖的測試儀表和接續工具也全都要自己開發,困難極大。武漢郵電科學研究院,考慮到保證光纖通信最終能為經濟建設所用,開展了全面研究,除研製光纖外,還開展光電子器件和光纖通信系統的研製,使我國至今具有了完整的光纖通信產業。
1978年改革開放後,光纖通信的研發工作大大加快。上海、北京、武漢和桂林都研製出光纖通信試驗系統。1982年郵電部重點科研工程「八二工程」在武漢開通。該工程被稱為實用化工程,要求一切是商用產品而不是試驗品,要符合國際CCITT標准,要由設計院設計、工人施工,而不是科技人員施工。從此中國的光纖通信進入實用階段。在20世紀80年代中期,數字光纖通信的速率已達到144Mb/s,可傳送1980路電話,超過同軸電纜載波。於是,光纖通信作為主流被大量採用,在傳輸干線上全面取代電纜。經過國家「六五」、「七五」、「八五」和「九五」計劃,中國已建成「八縱八橫」干線網,連通全國各省區市。中國已敷設光纜總長約250萬公里。光纖通信已成為中國通信的主要手段。在國家科技部、計委、經委的安排下,1999年中國生產的8×2.5Gb/sWDM系統首次在青島至大連開通,隨之沈陽至大連的32×2.5Gb/sWDM光纖通信系統開通。2005年3.2Tbps超大容量的光纖通信系統在上海至杭州開通,是至今世界容量最大的實用線路。
中國已建立了一定規模的光纖通信產業。中國生產的光纖光纜、半導體光電子器件和光纖通信系統能供國內建設,並有少量出口。
有人認為,我國光纖通信主要干線已經建成,光纖通信容量達到Tbps,幾乎用不完,再則2000年的IT泡沫,使光纖的價格低到每公里100元,幾乎無利可圖。因此不要發展光纖通信技術了。
實際上,特別是中國,省內農村有許多空白需要建設;3G移動通信網的建設也需要光纖網來支持;隨著寬頻業務的發展、網路需要擴容等,光纖通信仍有巨大的市場。每年光纖通信設備和光纜的銷售量是上升的。