當前位置:首頁 » 有線網路 » 太陽光纖速度

太陽光纖速度

發布時間: 2021-03-04 00:24:04

⑴ 太陽光到地球的速度是多少

地球繞日公轉軌道是一個接近正圓的橢圓,太陽位於橢圓軌道的一個焦點上,這樣在專一屬年內、乃至在一天內,日地距離都在不停的變化之中。

每年1月初,地球位於繞日公轉軌道的近日點,日地距離達到最小值,約為1.471億千米。
每年7月初,地球位於繞日公轉軌道的遠日點,日地距離達到最大值,約為1.521億千米。

光的速度是每秒鍾三十萬公里
太陽光從太陽射到地球上 最近的距離是 8分鍾10秒 最遠的距離是 8分鍾27秒

⑵ 太陽光在真空中的傳播速度為多少 千米 每秒

光在真空中的傳播速度目前公認值為C=299 792 458 米/秒 一般四捨五入為3x10⑻米/秒,是最重要的物理常數之一。

光速與觀測者相對於光源的運動速度無關。物體的質量將隨著速度的增大而增大,當物體的速度接近光速時,它的動質量將趨於無窮大,所以質量不為0的物體達到光速是不可能的。

只有靜質量為零的光子,才始終以光速運動著。光速與任何速度疊加,得到的仍然是光速。真空中的光速是一個重要的物理常量。


(2)太陽光纖速度擴展閱讀:

作用:當某物體運動速度相對於另一物體接近光速,某物體的時間相對於另一物體減慢,時間變化符合洛倫茲變換。

(二十世紀七十年代通過衛星和地面天文台觀測日食的同一時間位置的不同得以證實)光速是目前已知的最大速度,物體達到光速時動能無窮大,所以按當前人類的認知來說達到光速不可能,所以光速、超光速的問題不在物理學討論范圍之內。

自20世紀初起,我們的理論一直受制於愛因斯坦驗證的光速極限,即每秒186282英里(約合每秒30萬公里)。即使我們把宇宙飛船加速到這一速度,到達距離我們最近的恆星系統半人馬座阿爾法星(距離我們大約4.3光年)並返回,也需要近十年時間。此外,宇宙飛船本身還要考慮能量限制。

⑶ 太陽光的速度是多少

光在真空中傳播的速度是3×10^8米/秒太陽光大約以8光年才能傳到地球,太陽距地球約為1.5億千米,光在其它透明物質中傳播的速度比在真空中傳播的速度慢。

⑷ 太陽的光與手電筒的光一樣嗎速度一樣嗎如果不一樣,那麼光速是怎樣的標准!

光的顏色不一樣。速度一樣。(光速只與媒質有關,與顏色,強弱都沒有關系。)光速相對於任何速度都是光速。

⑸ 光的速度是多少,太陽光多長時間能到月球

光速(抄C)=30萬千米/秒,太陽襲到地球距離平均值:1.5億千米 所需時間:150000000÷300000=500秒=8分20秒 月地距離平均是38萬公里,以光速的話大約差1秒多點.當日食的時候(月球在地球和太陽之間),太陽到月球的時間大約是8分19秒; 當月食的時候(地球在月球和太陽之間),太陽到月球大約是8分21秒.

⑹ 光速就是太陽發出的光的速度嗎

因為1光年=襲94605億公里≈6300r地,光速為30萬公里/秒,所以,太陽光射到地球時間為:約8.3分鍾,太陽距地球:約1.58×10-5光年。按日地距離1.5億公里計算,光速在真空中速度是30萬公里每秒,需要8分20秒左右;日地距離精確點1.49億公里計算,需要8分16秒7左右.當然啦,這都是很不精確的,因為這還涉及到光進入大氣層後速度變化(不過這個變化不是很大,可以說是很小,因為大氣層的厚度對光的秒速來說太小了),地球軌道是橢圓的等等因素所以說,陽光照到地球的時間約在8分16秒到8分20秒左右

⑺ 太陽光的速度為什麼那麼快是因為太陽的能量嗎

不是因為太陽的能量。光速的測定在光學的發展史上具有非常特殊而重要的意義。它不僅推動了光學實驗,也打破了光速無限的傳統觀念;在物理學理論研究的發展里程中,它不僅為粒子說和波動說的爭論提供了判定的依據,而且最終推動了愛因斯坦相對論理論的發展。
在光速的問題上物理學界曾經產生過爭執,開普勒和笛卡爾都認為光的傳播不需要時間,是在瞬時進行的。但伽利略認為光速雖然傳播得很快,但卻是可以測定的。1607年,伽利略進行了最早的測量光速的實驗。
伽利略的方法是,讓兩個人分別站在相距一英里的兩座山上,每個人拿一個燈,第一個人先舉起燈,當第二個人看到第一個人的燈時立即舉起自己的燈,從第一個人舉起燈到他看到第二個人的燈的時間間隔就是光傳播兩英里的時間。但由於光速傳播的速度實在是太快了,這種方法根本行不通。但伽利略的實驗揭開了人類歷史上對光速進行研究的序幕。
1676年,丹麥天文學家羅麥第一次提出了有效的光速測量方法。他在觀測木星的衛星的隱食周期時發現:在一年的不同時期,它們的周期有所不同;在地球處於太陽和木星之間時的周期與太陽處於地球和木星之間時的周期相差十四五天。他認為這種現象是由於光具有速度造成的,而且他還推斷出光跨越地球軌道所需要的時間是22分鍾。1676年9月,羅麥預言預計11月9日上午5點25分45秒發生的木衛食將推遲10分鍾。巴黎天文台的科學家們懷著將信將疑的態度,觀測並最終證實了羅麥的預言。
羅麥的理論沒有馬上被法國科學院接受,但得到了著名科學家惠更斯的贊同。惠更斯根據他提出的數據和地球的半徑第一次計算出了光的傳播速度:214000千米/秒。雖然這個數值與目前測得的最精確的數據相差甚遠,但他啟發了惠更斯對波動說的研究;更重要的是這個結果的錯誤不在於方法的錯誤,只是源於羅麥對光跨越地球的時間的錯誤推測,現代用羅麥的方法經過各種校正後得出的結果是298000千米/秒,很接近於現代實驗室所測定的精確數值。
1725年,英國天文學家布萊德雷發現了恆星的「光行差」現象,以意外的方式證實了羅麥的理論。剛開始時,他無法解釋這一現象,直到1728年,他在坐船時受到風向與船航向的相對關系的啟發,認識到光的傳播速度與地球公轉共同引起了「光行差」的現象。他用地球公轉的速度與光速的比例估算出了太陽光到達地球需要8分13秒。這個數值較羅麥法測定的要精確一些。菜德雷測定值證明了羅麥有關光速有限性的說法。
光速的測定,成了十七世紀以來所展開的關於光的本性的爭論的重要依據。但是,由於受當時實驗環境的局限,科學家們只能以天文方法測定光在真空中的傳播速度,還不能解決光受傳播介質影響的問題,所以關於這一問題的爭論始終懸而未決。
十八世紀,科學界是沉悶的,光學的發展幾乎處於停滯的狀態。繼布萊德雷之後,經過一個多世紀的醞釀,到了十九世紀中期,才出現了新的科學家和新的方法來測量光速。
1849年,法國人菲索第一次在地面上設計實驗裝置來測定光速。他的方法原理與伽利略的相類似。他將一個點光源放在透鏡的焦點處,在透鏡與光源之間放一個齒輪,在透鏡的另一測較遠處依次放置另一個透鏡和一個平面鏡,平面鏡位於第二個透鏡的焦點處。點光源發出的光經過齒輪和透鏡後變成平行光,平行光經過第二個透鏡後又在平面鏡上聚於一點,在平面鏡上反射後按原路返回。由於齒輪有齒隙和齒,當光通過齒隙時觀察者就可以看到返回的光,當光恰好遇到齒時就會被遮住。從開始到返回的光第一次消失的時間就是光往返一次所用的時間,根據齒輪的轉速,這個時間不難求出。通過這種方法,菲索測得的光速是315000千米/秒。由於齒輪有一定的寬度,用這種方法很難精確的測出光速。
1850年,法國物理學家傅科改進了菲索的方法,他只用一個透鏡、一面旋轉的平面鏡和一個凹面鏡。平行光通過旋轉的平面鏡匯聚到凹面鏡的圓心上,同樣用平面鏡的轉速可以求出時間。傅科用這種方法測出的光速是298000 千米/秒。另外傅科還測出了光在水中的傳播速度,通過與光在空氣中傳播速度的比較,他測出了光由空氣中射入水中的折射率。這個實驗在微粒說已被波動說推翻之後,又一次對微粒說做出了判決,給光的微粒理論帶了最後的沖擊。
1928年,卡婁拉斯和米太斯塔德首先提出利用克爾盒法來測定光速。1951年,貝奇斯傳德用這種方法測出的光速是299793千米/秒。
光波是電磁波譜中的一小部分,當代人們對電磁波譜中的每一種電磁波都進行了精密的測量。1950年,艾森提出了用空腔共振法來測量光速。這種方法的原理是,微波通過空腔時當它的頻率為某一值時發生共振。根據空腔的長度可以求出共振腔的波長,在把共振腔的波長換算成光在真空中的波長,由波長和頻率可計算出光速。
當代計算出的最精確的光速都是通過波長和頻率求得的。1958年,弗魯姆求出光速的精確值:299792.5±0.1千米/秒。1972年,埃文森測得了目前真空中光速的最佳數值:299792457.4±0.1米/秒。
光速的測定在光學的研究歷程中有著重要的意義。雖然從人們設法測量光速到人們測量出較為精確的光速共經歷了三百多年的時間,但在這期間每一點進步都促進了幾何光學和物理光學的發展,尤其是在微粒說與波動說的爭論中,光速的測定曾給這一場著名的科學爭辯提供了非常重要的依據。

⑻ 太陽發出的光以多少的速度射像地球

三乘以十的八次方公里每秒

熱點內容
網卡了的原因 發布:2021-03-16 21:18:20 瀏覽:602
聯通客服工作怎麼樣 發布:2021-03-16 21:17:49 瀏覽:218
路由器畫圖 發布:2021-03-16 21:17:21 瀏覽:403
大網卡收費 發布:2021-03-16 21:16:50 瀏覽:113
路由器免費送 發布:2021-03-16 21:16:19 瀏覽:985
孝昌營業廳 發布:2021-03-16 21:15:54 瀏覽:861
網速增速代碼 發布:2021-03-16 21:15:29 瀏覽:194
怎麼黑光纖 發布:2021-03-16 21:14:54 瀏覽:901
埠增大 發布:2021-03-16 21:14:20 瀏覽:709
開機沒信號是什麼原因 發布:2021-03-16 21:13:45 瀏覽:645