深度卷积网络
㈠ 深度卷积神经网络 能实现数据分类吗
当然抄可以,CNN最初就是用来识别手写的邮编数字,也就是识别一个手写阿拉伯数字是0~9中的哪一个,实际上就是一个十分类问题。
Demo参见:http://yann.lecun.com/exdb/lenet/
㈡ 深度学习中的卷积网络到底怎么回事
这两个概念实际上是互相交叉的,例如,卷积神经网络(Convolutionalneuralnetworks,简称CNNs)就是内一种深度的监督学习下的容机器学习模型,而深度置信网(DeepBeliefNets,简称DBNs)就是一种无监督学习下的机器学习模型。深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。
㈢ 卷积神经网络和深度神经网络的区别是什么
没有卷积神经网络的说法,只有卷积核的说法。
电脑图像处理的真正价值在于:一旦图像存储在电脑上,就可以对图像进行各种有效的处理。如减小像素的颜色值,可以解决曝光过度的问题,模糊的图像也可以进行锐化处理,清晰的图像可以使用模糊处理模拟摄像机滤色镜产生的柔和效果。
用Photoshop等图像处理软件,施展的魔法几乎是无止境的。四种基本图像处理效果是模糊、锐化、浮雕和水彩。ß这些效果是不难实现的,它们的奥妙部分是一个称为卷积核的小矩阵。这个3*3的核含有九个系数。为了变换图像中的一个像素,首先用卷积核中心的系数乘以这个像素值,再用卷积核中其它八个系数分别乘以像素周围的八个像素,最后把这九个乘积相加,结果作为这个像素的值。对图像中的每个像素都重复这一过程,对图像进行了过滤。采用不同的卷积核,就可以得到不同的处理效果。ß用PhotoshopCS6,可以很方便地对图像进行处理。
模糊处理——模糊的卷积核由一组系数构成,每个系数都小于1,但它们的和恰好等于1,每个像素都吸收了周围像素的颜色,每个像素的颜色分散给了它周围的像素,最后得到的图像中,一些刺目的边缘变得柔和。
锐化卷积核中心的系数大于1,周围八个系数和的绝对值比中间系数小1,这将扩大一个像素与之周围像素颜色之间的差异,最后得到的图像比原来的图像更清晰。
浮雕卷积核中的系数累加和等于零,背景像素的值为零,非背景像素的值为非零值。照片上的图案好像金属表面的浮雕一样,轮廓似乎凸出于其表面。
要进行水彩处理,首先要对图像中的色彩进行平滑处理,把每个像素的颜色值和它周围的二十四个相邻的像素颜色值放在一个表中,然后由小到大排序,把表中间的一个颜色值作为这个像素的颜色值。然后用锐化卷积核对图像中的每个像素进行处理,以使得轮廓更加突出,最后得到的图像很像一幅水彩画。
我们把一些图像处理技术结合起来使用,就能产生一些不常见的光学效果,例如光晕等等。
希望我能帮助你解疑释惑。
㈣ 卷积神经网络和深度神经网络的区别是什么
卷积”和“深度”是神经网络互相独立的两个性质。“卷积”指的是前端有卷积层;“深度”指的是网络有很多层(理论上讲,有两个隐藏层就可以叫“深度”了)。
㈤ 深度残差网络是卷积网络的一种吗
是的,深度残差网络在传统的卷积神经网络上加入了残差模块,
再看看别人怎么说的。
㈥ 深度卷积神经网络必须用gpu加速么
不一定,但gpu往往比cpu快数十倍。
cpu速度也是非常快的,根据cpu核心数适当开多线程可以成倍提升速度。
望采纳
㈦ 如何更好的理解分析深度卷积神经网络
用局部连接而不是全连接,同时权值共享。
局部连接的概念参考局部感受域,即某个视神经元仅考虑某一个小区域的视觉输入,因此相比普通神经网络的全连接层(下一层的某一个神经元需要与前一层的所有节点连接),卷积网络的某一个卷积层的所有节点只负责前层输入的某一个区域(比如某个3*3的方块)。这样一来需要训练的权值数相比全连接而言会大大减少,进而减小对样本空间大小的需求。
权值共享的概念就是,某一隐藏层的所有神经元共用一组权值。
这两个概念对应卷积层的话,恰好就是某个固定的卷积核。卷积核在图像上滑动时每处在一个位置分别对应一个“局部连接”的神经元,同时因为“权值共享”的缘故,这些神经元的参数一致,正好对应同一个卷积核。
顺便补充下,不同卷积核对应不同的特征,比如不同方向的边(edge)就会分别对应不同的卷积核。
激活函数f(x)用ReLU的话避免了x过大梯度趋于0(比如用sigmoid)而影响训练的权值的情况(即GradientVanishing)。同时结果会更稀疏一些。
池化之后(例如保留邻域内最大或采纳平均以舍弃一些信息)一定程度也压制了过拟合的情况。
综述
总体来说就是重复卷积-relu来提取特征,进行池化之后再作更深层的特征提取,实质上深层卷积网络的主要作用在于特征提取。最后一层直接用softmax来分类(获得一个介于0~1的值表达输入属于这一类别的概率)。
㈧ 影响深度卷积神经网络算法的关键参数是().
卷积核个数filters 卷积核尺寸kernel_size 步长striders 填充方式padding 卷积核激活方式activation 卷积核权重参数初始分布 卷积核偏置参数初始分布
池化尺寸 池化步长 池化方式
优化算法 目标函数 batch大小
正则化 数据预处理
等
能影响的参数太多
㈨ 深度卷积神经网络 为什么每次epoch 提高准确率
练习题做了一遍没印象,那就再做几遍