贝叶斯网络应用实例
A. 贝叶斯网络模型具体作用,举个列子说明
贝叶斯网络模型最简单的例子是“分类器”,即在观测节点输入多个特征,内就能获得这些特征所容对应的具体事物。
例如:一个箱子里装有篮球,排球和足球,你的朋友每次从箱子里取出某一个球。但你看不见所取球的类型,只能通过朋友描述尺寸,外表,颜色等特征(观测数据)来辨别(分类),当然你之所以具备辨别(分类)能力是你长期对几种球类的观察和认识,并将这些特征一一储存在你脑部,这就形成先验知识以及特征与具体事物的对应关系(网络模型结构和参数)。如果模型和先验知识精确,你的朋友仅需要说出尺寸或者颜色你就立刻可以分类,如果模型或先验知识不精确,那朋友就需要多说出几个特征你才能辨别。
通过上面的例子发现,贝叶斯网络需要学习,即通过数据进行训练,在具有观测数据时需要推理。这里就包含了BN的核心研究内容。我就不一一介绍,目前全国大约有1200多篇文章都是BN的相关工作进展,看看就知道了。
B. 如何利用贪心法构建贝叶斯网络代码
基于matlab的贝叶斯网络工具箱BNT是kevin p.murphy基于matlab语言开发的关于贝叶斯网络学习的开源软件包,提供了许多贝叶斯网络学习的底层基础函数库,支持多种类型的节点(概率分布)、精确推理和近似推理、参数学习及结构学习、静态模型和动态模型。
贝叶斯网络表示:BNT中使用矩阵方式表示贝叶斯网络,即若节点i到j有一条弧,则对应矩阵中(i,j)值为1,否则为0。
结构学习算法函数:BNT中提供了较为丰富的结构学习函数,都有:
1. 学习树扩展贝叶斯网络结构的TANC算法learn_struct_tan().
2. 数据完整条件下学习一般贝叶斯网络结构的K2算法learn_struct_k2()、贪婪搜索GS(greedy search)算法learn_struct_gs()和爬山HC(hill climbing)算法learn_struct_hc()等。
3. 缺失数据条件下学习一般贝叶斯网络结构的最大期望EM(expectation maximization)算法learn_struct_EM()和马尔科夫链蒙特卡罗MCMC(Markov Chain Monte Carlo)learn_struct_mcmc()算法等。
参数学习算法函数:BNT中也提供了丰富的参数学习函数,都有:
1. 完整数据时,学习参数的方法主要有两种:最大似然估计learn_params()和贝叶斯方法bayes_update_params();
2. 数据缺失时,如果已知网络拓扑结构,用EM算法来计算参数,倘若未知网络拓扑结构,使用结构最大期望SEM(structure EM)算法learn_struct_SEM()。
推理机制及推理引擎:为了提高运算速度,使各种推理算法能够有效应用,BNT工具箱采用了引擎机制,不同的引擎根据不同的算法来完成模型转换、细化和求解。这个推理过程如下:
BNT中提供了多种推理引擎,都有:
1. 联合树推理引擎jtree_inf_engine();
2. 全局联合树推理引擎global_joint_inf_engine();
3. 信念传播推理引擎 belprop_inf_engine();
4. 变量消元推理引擎 var_elim_inf_engine().
C. 动态贝叶斯网络推理学习理论及应用的内容简介
动态贝叶斯网络理论是贝叶斯网络理论的延拓,研究内容涉及推理和学习两大方内面,该理论在人工智容能、机器学习、自动控制领域得到越来越广泛的应用。本书首先从静态网络的模型表达、推理及学习入手,进而针对动态贝叶斯网络推理算法、平稳系统动态贝叶斯网络结构学习模型设计、非平稳系统动态网络变结构学习模型设计、基于概率模型进化优化动态贝叶斯网络结构寻优算法、进化优化与动态贝叶斯网络混和优化等方面进行了讨论,最终将推理及结构学习理论用于无人机路径规划、自主控制等方面。
D. 贝叶斯网络的特性
1、贝叶斯网络本身是一种不定性因果关联模型。贝叶斯网络与其他决策模型不同,它本身是将多元知识图解可视化的一种概率知识表达与推理模型,更为贴切地蕴含了网络节点变量之间的因果关系及条件相关关系。
2、贝叶斯网络具有强大的不确定性问题处理能力。贝叶斯网络用条件概率表达各个信息要素之间的相关关系,能在有限的、不完整的、不确定的信息条件下进行学习和推理。
3、贝叶斯网络能有效地进行多源信息表达与融合。贝叶斯网络可将故障诊断与维修决策相关的各种信息纳入网络结构中,按节点的方式统一进行处理,能有效地按信息的相关关系进行融合。
对于贝叶斯网络推理研究中提出了多种近似推理算法,主要分为两大类:基于仿真方法和基于搜索的方法。在故障诊断领域里就我们水电仿真而言,往往故障概率很小,所以一般采用搜索推理算法较适合。就一个实例而言,首先要分析使用哪种算法模型:
a.)如果该实例节点信度网络是简单的有向图结构,它的节点数目少的情况下,采用贝叶斯网络的精确推理,它包含多树传播算法,团树传播算法,图约减算法,针对实例事件进行选择恰当的算法;
b.)如果是该实例所画出节点图形结构复杂且节点数目多,我们可采用近似推理算法去研究,具体实施起来最好能把复杂庞大的网络进行化简,然后在与精确推理相结合来考虑。
在日常生活中,人们往往进行常识推理,而这种推理通常是不准确的。例如,你看见一个头发潮湿的人走进来,你认为外面下雨了,那你也许错了;如果你在公园里看到一男一女带着一个小孩,你认为他们是一家人,你可能也犯了错误。在工程中,我们也同样需要进行科学合理的推理。但是,工程实际中的问题一般都比较复杂,而且存在着许多不确定性因素。这就给准确推理带来了很大的困难。很早以前,不确定性推理就是人工智能的一个重要研究领域。尽管许多人工智能领域的研究人员引入其它非概率原理,但是他们也认为在常识推理的基础上构建和使用概率方法也是可能的。为了提高推理的准确性,人们引入了概率理论。最早由Judea Pearl于1988年提出的贝叶斯网络(Bayesian Network)实质上就是一种基于概率的不确定性推理网络。它是用来表示变量集合连接概率的图形模型,提供了一种表示因果信息的方法。当时主要用于处理人工智能中的不确定性信息。随后它逐步成为了处理不确定性信息技术的主流,并且在计算机智能科学、工业控制、医疗诊断等领域的许多智能化系统中得到了重要的应用。
贝叶斯理论是处理不确定性信息的重要工具。作为一种基于概率的不确定性推理方法,贝叶斯网络在处理不确定信息的智能化系统中已得到了重要的应用,已成功地用于医疗诊断、统计决策、专家系统、学习预测等领域。这些成功的应用,充分体现了贝叶斯网络技术是一种强有力的不确定性推理方法。
E. 贝叶斯原理及应用
贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是:1、已知类条件概率密度参数表达式和先验概率。2、利用贝叶斯公式转换成后验概率。3、根据后验概率大小进行决策分类。他对统计推理的主要贡献是使用了"逆概率"这个概念,并把它作为一种普遍的推理方法提出来。贝叶斯定理原本是概率论中的一个定理,这一定理可用一个数学公式来表达,这个公式就是著名的贝叶斯公式。 贝叶斯公式是他在1763年提出来的:假定B1,B2,……是某个过程的若干可能的前提,则P(Bi)是人们事先对各前提条件出现可能性大小的估计,称之为先验概率。如果这个过程得到了一个结果A,那么贝叶斯公式提供了我们根据A的出现而对前提条件做出新评价的方法。P(Bi∣A)既是对以A为前提下Bi的出现概率的重新认识,称 P(Bi∣A)为后验概率。经过多年的发展与完善,贝叶斯公式以及由此发展起来的一整套理论与方法,已经成为概率统计中的一个冠以“贝叶斯”名字的学派,在自然科学及国民经济的许多领域中有着广泛应用。公式:设D1,D2,……,Dn为样本空间S的一个划分,如果以P(Di)表示事件Di发生的概率,且P(Di)>0(i=1,2,…,n)。对于任一事件x,P(x)>0,则有: nP(Dj/x)=p(x/Dj)P(Dj)/∑P(X/Di)P(Di)i=1( http://wiki.mbalib.com/w/images/math/9/9/b/.png)贝叶斯预测模型在矿物含量预测中的应用 贝叶斯预测模型在气温变化预测中的应用 贝叶斯学习原理及其在预测未来地震危险中的应用 基于稀疏贝叶斯分类器的汽车车型识别 信号估计中的贝叶斯方法及应用 贝叶斯神经网络在生物序列分析中的应用 基于贝叶斯网络的海上目标识别 贝叶斯原理在发动机标定中的应用 贝叶斯法在继电器可靠性评估中的应用 相关书籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》 Springer 《贝叶斯决策》 黄晓榕 《经济信息价格评估以及贝叶斯方法的应用》 张丽 , 闫善文 , 刘亚东 《全概率公式与贝叶斯公式的应用及推广》 周丽琴 《贝叶斯均衡的应用》 王辉 , 张剑飞 , 王双成 《基于预测能力的贝叶斯网络结构学习》 张旭东 , 陈锋 , 高隽 , 方廷健 《稀疏贝叶斯及其在时间序列预测中的应用》 邹林全 《贝叶斯方法在会计决策中的应用》 周丽华 《市场预测中的贝叶斯公式应用》 夏敏轶 , 张焱 《贝叶斯公式在风险决策中的应用》 臧玉卫 , 王萍 , 吴育华 《贝叶斯网络在股指期货风险预警中的应用》 党佳瑞 , 胡杉杉 , 蓝伯雄 《基于贝叶斯决策方法的证券历史数据有效性分析》 肖玉山 , 王海东 《无偏预测理论在经验贝叶斯分析中的应用》 严惠云 , 师义民 《Linex损失下股票投资的贝叶斯预测》 卜祥志 , 王绍绵 , 陈文斌 , 余贻鑫 , 岳顺民 《贝叶斯拍卖定价方法在配电市场定价中的应用》 刘嘉焜 , 范贻昌 , 刘波 《分整模型在商品价格预测中的应用》 《Bayes方法在经营决策中的应用》 《决策有用性的信息观》 《统计预测和决策课件》 《贝叶斯经济时间序列预测模型及其应用研究》 《贝叶斯统计推断》 《决策分析理论与实务》
F. 贝叶斯网络主流工具软件
目前国际上存在许多种 BN 处理工具,一般均同时支持多种图模型处理。下面介绍几种比较常见的 BN 工具软件。
( 1) Hugin Expert: 该软件包括一系列产品,自称是基于 BN 的人工智能领域的领航者,既可作为单个工具使用,也可集成到其他产品中使用。目前在软件、医学、工业、军事、警容、信息处理以及农业等多个领域得到了广泛应用。如用应用于 NOKIA 公司的移动网络故障诊断、医学决策支持、隧道施工设计阶段的决策支持、数据挖掘及风险评估等。
( 2) 微软的 BBN( Microsoft Belief Networks) : 该软件采用视窗界面,界面友好且操作简单,并且提供了 API 接口,以供 VB 调用。缺点是用户不能自主选择概率推理算法,且不提供结构学习功能,即不能从数据中学习建立 BN 模型。
( 3) Netica: 该软件是加拿大 Norsys 软件公司开发研制的图模型处理工具。其主要特点是提供了图形化的建模界面及概率参数展示界面,方便直观且易于操作,并且提供了 API接口,供 Java 调用。缺点是用户不能自主选择概率推理算法。
( 4) Ergo: 该软件是由 Noetic 公司开发研制的可视化建模分析软件,它功能单一且应用范围较窄,主要用于专家系统的建立,对节点的个数和状态空间的范围都有一定程度上的限制。
( 5) BNJ: 是由肯尼索州立大学开发的开放源码软件,采用视窗界面,兼容其他 BN 建模软件的文件格式,包括 Netica、Ergo、Hugin Expert、GeNie 等。支持精确推理和近似推理、结构学习和参数学习,并且提供了 API 接口供调用。该软件最大的缺点是可操作性差,且帮助功能相对较弱。
( 6) GeNie 2. 0: 该软件是匹兹堡大学决策系统实验室( Decision Systems Laboratory,U-niversity of Pittsburgh) 开发研制的图模型处理软件。采用了图形化建模界面,界面直观,操作简单,提供多种推理算法,且支持结构学习和参数学习。该实验室还用 VC + + 开发了API 接口 SmileX 和 Smile. net ,以供 VB、VC + + 、Java、C Sharp 等多种语言调用。
上述工具各有特点,本文选用了 GeNie 软件及其提供的 Smile. net 软件包,进行 BN 模型构建、BN 学习及推理等工作。图 2. 1 为 GeNie 2. 0 软件的主界面。
图 2. 1 Genie2. 0 主界面
G. 求应用贝叶斯网络的MATLAB程序实例(或R软件程序实例)
希望有帮助,呵呵
H. 怎么通俗易懂地解释贝叶斯网络和它的应用
第一步:贝叶斯网络工抄具箱
第二步:解压压缩包
第三步:将工具箱中bnt文件夹复制到matlab工具箱文件夹中(D:\Program Files\MATLAB\R2014a\toolbox)
第四步:打开matlab2014a
贝叶斯网络是处理不确定信息做有效的表示方法之一。其关键的特征之一是提供了把整个概率分布分解成几个局部分布的方法,网络的拓扑结构表明如何从局部的概率分布获得完全的联合概率分布。
贝叶斯网络适合于对领域知识具有一定了解的情况,至少对变量间的依赖关系较清楚。否则直接从数据中学习贝叶斯网络结构复杂性极高(随节点的增加成指数级增长)