实现网络爬虫
『壹』 Java网络爬虫怎么实现
网络爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组成。
传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。对于垂直搜索来说,聚焦爬虫,即有针对性地爬取特定主题网页的爬虫,更为适合。
以下是一个使用java实现的简单爬虫核心代码:
public void crawl() throws Throwable {
while (continueCrawling()) {
CrawlerUrl url = getNextUrl(); //获取待爬取队列中的下一个URL
if (url != null) {
printCrawlInfo();
String content = getContent(url); //获取URL的文本信息
//聚焦爬虫只爬取与主题内容相关的网页,这里采用正则匹配简单处理
if (isContentRelevant(content, this.regexpSearchPattern)) {
saveContent(url, content); //保存网页至本地
//获取网页内容中的链接,并放入待爬取队列中
Collection urlStrings = extractUrls(content, url);
addUrlsToUrlQueue(url, urlStrings);
} else {
System.out.println(url + " is not relevant ignoring ...");
}
//延时防止被对方屏蔽
Thread.sleep(this.delayBetweenUrls);
}
}
closeOutputStream();
}
private CrawlerUrl getNextUrl() throws Throwable {
CrawlerUrl nextUrl = null;
while ((nextUrl == null) && (!urlQueue.isEmpty())) {
CrawlerUrl crawlerUrl = this.urlQueue.remove();
//doWeHavePermissionToVisit:是否有权限访问该URL,友好的爬虫会根据网站提供的"Robot.txt"中配置的规则进行爬取
//isUrlAlreadyVisited:URL是否访问过,大型的搜索引擎往往采用BloomFilter进行排重,这里简单使用HashMap
//isDepthAcceptable:是否达到指定的深度上限。爬虫一般采取广度优先的方式。一些网站会构建爬虫陷阱(自动生成一些无效链接使爬虫陷入死循环),采用深度限制加以避免
if (doWeHavePermissionToVisit(crawlerUrl)
&& (!isUrlAlreadyVisited(crawlerUrl))
&& isDepthAcceptable(crawlerUrl)) {
nextUrl = crawlerUrl;
// System.out.println("Next url to be visited is " + nextUrl);
}
}
return nextUrl;
}
private String getContent(CrawlerUrl url) throws Throwable {
//HttpClient4.1的调用与之前的方式不同
HttpClient client = new DefaultHttpClient();
HttpGet httpGet = new HttpGet(url.getUrlString());
StringBuffer strBuf = new StringBuffer();
HttpResponse response = client.execute(httpGet);
if (HttpStatus.SC_OK == response.getStatusLine().getStatusCode()) {
HttpEntity entity = response.getEntity();
if (entity != null) {
BufferedReader reader = new BufferedReader(
new InputStreamReader(entity.getContent(), "UTF-8"));
String line = null;
if (entity.getContentLength() > 0) {
strBuf = new StringBuffer((int) entity.getContentLength());
while ((line = reader.readLine()) != null) {
strBuf.append(line);
}
}
}
if (entity != null) {
nsumeContent();
}
}
//将url标记为已访问
markUrlAsVisited(url);
return strBuf.toString();
}
public static boolean isContentRelevant(String content,
Pattern regexpPattern) {
boolean retValue = false;
if (content != null) {
//是否符合正则表达式的条件
Matcher m = regexpPattern.matcher(content.toLowerCase());
retValue = m.find();
}
return retValue;
}
public List extractUrls(String text, CrawlerUrl crawlerUrl) {
Map urlMap = new HashMap();
extractHttpUrls(urlMap, text);
extractRelativeUrls(urlMap, text, crawlerUrl);
return new ArrayList(urlMap.keySet());
}
private void extractHttpUrls(Map urlMap, String text) {
Matcher m = (text);
while (m.find()) {
String url = m.group();
String[] terms = url.split("a href=\"");
for (String term : terms) {
// System.out.println("Term = " + term);
if (term.startsWith("http")) {
int index = term.indexOf("\"");
if (index > 0) {
term = term.substring(0, index);
}
urlMap.put(term, term);
System.out.println("Hyperlink: " + term);
}
}
}
}
private void extractRelativeUrls(Map urlMap, String text,
CrawlerUrl crawlerUrl) {
Matcher m = relativeRegexp.matcher(text);
URL textURL = crawlerUrl.getURL();
String host = textURL.getHost();
while (m.find()) {
String url = m.group();
String[] terms = url.split("a href=\"");
for (String term : terms) {
if (term.startsWith("/")) {
int index = term.indexOf("\"");
if (index > 0) {
term = term.substring(0, index);
}
String s = //" + host + term;
urlMap.put(s, s);
System.out.println("Relative url: " + s);
}
}
}
}
public static void main(String[] args) {
try {
String url = "";
Queue urlQueue = new LinkedList();
String regexp = "java";
urlQueue.add(new CrawlerUrl(url, 0));
NaiveCrawler crawler = new NaiveCrawler(urlQueue, 100, 5, 1000L,
regexp);
// boolean allowCrawl = crawler.areWeAllowedToVisit(url);
// System.out.println("Allowed to crawl: " + url + " " +
// allowCrawl);
crawler.crawl();
} catch (Throwable t) {
System.out.println(t.toString());
t.printStackTrace();
}
}
『贰』 网络爬虫的技术原理、实现方法;
http://wenku..com/link?url=h3VRt4IVdt3G-_3rlyH3wR3OhLv4eq2kAjJv6qK4tr_1AGiY_-3lKVxlQ5b6bvFVxUwKS请自行下载!
『叁』 各种语言写网络爬虫有什么优点缺点
我用 PHP 和 Python 都写过爬虫和正文提取程序。
最开始使用 PHP 所以先说说 PHP 的优点:
1.语言比较简单,PHP 是非常随意的一种语言。写起来容易让你把精力放在你要做的事情上,而不是各种语法规则等等。
2.各种功能模块齐全,这里分两部分:
1.网页下载:curl 等扩展库;
2.文档解析:dom、xpath、tidy、各种转码工具,可能跟题主的问题不太一样,我的爬虫需要提取正文,所以需要很复杂的文本处理,所以各种方便的文本处理工具是我的大爱。;
总之容易上手。
缺点:
1.并发处理能力较弱:由于当时 PHP 没有线程、进程功能,要想实现并发需要借用多路服用模型,PHP 使用的是 select 模型。实现其来比较麻烦,可能是因为水平问题我的程序经常出现一些错误,导致漏抓。
再说说 Python:
优点:
1.各种爬虫框架,方便高效的下载网页;
2.多线程、进程模型成熟稳定,爬虫是一个典型的多任务处理场景,请求页面时会有较长的延迟,总体来说更多的是等待。多线程或进程会更优化程序效率,提升整个系统下载和分析能力。
3.GAE 的支持,当初写爬虫的时候刚刚有 GAE,而且只支持 Python ,利用 GAE 创建的爬虫几乎免费,最多的时候我有近千个应用实例在工作。
缺点:
1.对不规范 HTML 适应能力差:举个例子,如果一个页面里面同时有 GB18030 字符集的中文和 UTF-8 字符集的中文,Python 处理起来就没有 PHP 那么简单,你自己需要做很多的判断工作。当然这是提取正文时的麻烦。
Java 和 C++ 当时也考察过,相对脚本语言比较麻烦,所以放弃。
总之,如果开发一个小规模的爬虫脚本语言是个各方面比较有优势的语言。如果要开发一个复杂的爬虫系统可能 Java 是个增加选项, C++ 我感觉写个模块之类的更加适合。对于一个爬虫系统来说,下载和内文解析只是基本的两个功能。真正好的系统还包括完善的任务调度、监控、存储、页面数据保存和更新逻辑、排重等等。爬虫是一个耗费带宽的应用,好的设计会节约大量的带宽和服务器资源,并且好坏差距很大。
『肆』 如何一步一步学习到网络爬虫技术
作为零基础的你,我想你可能是想解决工作中的一个实际问题,或者仅仅是很想学习一下爬虫的技术,多一技之长。其实我准备开始学 Python 爬虫的时候也是一样,老板派了任务,暂时没有人会爬虫,我只有自学顶硬上。因此,我可以用思维图给你理清楚,你应该干什么。
我零基础但我想学网络爬虫:
路径1:我不想写代码,Excel/八爪鱼,用这些工具的好处是你可以很快上手,但是只能爬一些简单的网站,一旦网站出现限制,这些方法就是个玩具。因此,想弄点数据玩玩,玩这些玩具就好。
路径2:我可以学写代码,但是会不会很难啊?我以我的经验告诉你,找一个好的老师比自我胡思乱想,自我设限好得多。写代码这个事不难学,这也是为什么市面上有那么多代码速成的教学。这也是为什么我有些同学1年转专业进 Google 的事情发生。
这里给你描画一下你的学习之路:
学会 Python 的基本代码: 假如你没有任何编程基础,时间可能花1-2周,每天3小时。假设你有编程基础(VBA 也算吧),1小时。
理解爬虫原理:5分钟。为什么这么重要?我自认为学一个东西就像建大楼,先弄清楚大框架,然后再从地基学起。很多时候我们的学习是,还没弄懂大框架,就直接看网上的碎片化的教学,或者是跟着网上教学一章一章学,很容易学了芝麻丢了西瓜。我的自学就在这上面走了很多弯路。
应用爬虫原理做一个简单爬虫:30分钟。
先吃透获取网页:就是给一个网址发个请求,那么该网址会返回整个网页的数据。类似:你在浏览器键入网址,回车,然后你就看到了网站的整个页面。
再吃透解析网页:就是从整个网页的数据中提取你想要的数据。类似:你在浏览器中看到网站的整个页面,但是你想找到产品的价格,价格就是你想要的数据。
再学会储存数据:存储很简单,就是把数据存下来。
学会这些之后,你可以出去和别人说,我会 Python 爬虫,我想也没有人质疑你了。那么学完这一套下来,你的时间成本是多少呢?如果你有编程基础的话,1周吧。
所以,你是想当爬虫做个玩具玩玩,还是掌握一门实战利器。我觉得你可以自己衡量一下。
『伍』 求java实现网络爬虫的原理(源代码更好)
复杂的方法就是自己用java的相关类来模拟浏览器下载网页页面,然后使用DOM等技术从下载的网页中获取自己需要的内容。不过强烈建议你使用HttpClient和HttpParse框架来方便地实现网络爬虫功能。其中HttpClient框架主要实现从WEB服务器下载网页数据,功能极其强大。而HttpParse框架则是从网页文件中获取不同标签的内容,功能也很强大,而且使用十分方便,强烈推荐。
『陆』 java 实现网络爬虫用哪个爬虫框架比较好
有些人问,开发网络爬虫应该选择Nutch、Crawler4j、WebMagic、scrapy、WebCollector还是其他的?这里按照我的经验随便扯淡一下:
上面说的爬虫,基本可以分3类:
1.分布式爬虫:Nutch
2.JAVA单机爬虫:Crawler4j、WebMagic、WebCollector
3. 非JAVA单机爬虫:scrapy
第一类:分布式爬虫
爬虫使用分布式,主要是解决两个问题:
1)海量URL管理
2)网速
现在比较流行的分布式爬虫,是Apache的Nutch。但是对于大多数用户来说,Nutch是这几类爬虫里,最不好的选择,理由如下:
1)Nutch是为搜索引擎设计的爬虫,大多数用户是需要一个做精准数据爬取(精抽取)的爬虫。Nutch运行的一套流程里,有三分之二是为了搜索引擎而设计的。对精抽取没有太大的意义。也就是说,用Nutch做数据抽取,会浪费很多的时间在不必要的计算上。而且如果你试图通过对Nutch进行二次开发,来使得它适用于精抽取的业务,基本上就要破坏Nutch的框架,把Nutch改的面目全非,有修改Nutch的能力,真的不如自己重新写一个分布式爬虫框架了。
2)Nutch依赖hadoop运行,hadoop本身会消耗很多的时间。如果集群机器数量较少,爬取速度反而不如单机爬虫快。
3)Nutch虽然有一套插件机制,而且作为亮点宣传。可以看到一些开源的Nutch插件,提供精抽取的功能。但是开发过Nutch插件的人都知道,Nutch的插件系统有多蹩脚。利用反射的机制来加载和调用插件,使得程序的编写和调试都变得异常困难,更别说在上面开发一套复杂的精抽取系统了。而且Nutch并没有为精抽取提供相应的插件挂载点。Nutch的插件有只有五六个挂载点,而这五六个挂载点都是为了搜索引擎服务的,并没有为精抽取提供挂载点。大多数Nutch的精抽取插件,都是挂载在“页面解析”(parser)这个挂载点的,这个挂载点其实是为了解析链接(为后续爬取提供URL),以及为搜索引擎提供一些易抽取的网页信息(网页的meta信息、text文本)。
4)用Nutch进行爬虫的二次开发,爬虫的编写和调试所需的时间,往往是单机爬虫所需的十倍时间不止。了解Nutch源码的学习成本很高,何况是要让一个团队的人都读懂Nutch源码。调试过程中会出现除程序本身之外的各种问题(hadoop的问题、hbase的问题)。
5)很多人说Nutch2有gora,可以持久化数据到avro文件、hbase、mysql等。很多人其实理解错了,这里说的持久化数据,是指将URL信息(URL管理所需要的数据)存放到avro、hbase、mysql。并不是你要抽取的结构化数据。其实对大多数人来说,URL信息存在哪里无所谓。
6)Nutch2的版本目前并不适合开发。官方现在稳定的Nutch版本是nutch2.2.1,但是这个版本绑定了gora-0.3。如果想用hbase配合nutch(大多数人用nutch2就是为了用hbase),只能使用0.90版本左右的hbase,相应的就要将hadoop版本降到hadoop 0.2左右。而且nutch2的官方教程比较有误导作用,Nutch2的教程有两个,分别是Nutch1.x和Nutch2.x,这个Nutch2.x上写的是可以支持到hbase 0.94。但是实际上,这个Nutch2.x的意思是Nutch2.3之前、Nutch2.2.1之后的一个版本,这个版本在官方的SVN中不断更新。而且非常不稳定(一直在修改)。
所以,如果你不是要做搜索引擎,尽量不要选择Nutch作为爬虫。有些团队就喜欢跟风,非要选择Nutch来开发精抽取的爬虫,其实是冲着Nutch的名气(Nutch作者是Doug Cutting),当然最后的结果往往是项目延期完成。
如果你是要做搜索引擎,Nutch1.x是一个非常好的选择。Nutch1.x和solr或者es配合,就可以构成一套非常强大的搜索引擎了。如果非要用Nutch2的话,建议等到Nutch2.3发布再看。目前的Nutch2是一个非常不稳定的版本。
『柒』 如何java写/实现网络爬虫抓取网页
网络爬虫是一个自动提取网页的程序,它为搜索引擎从万维内网上下载网页,是搜索引擎的重容要组成。传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。
java实现网页源码获取的步骤:
(1)新建URL对象,表示要访问的网址。如:url=new URL("http://www.sina.com.cn");
(2)建立HTTP连接,返回连接对象urlConnection对象。如:urlConnection = (HttpURLConnection)url.openConnection();
(3)获取相应HTTP 状态码。如responsecode=urlConnection.getResponseCode();
(4)如果HTTP 状态码为200,表示成功。从urlConnection对象获取输入流对象来获取请求的网页源代码。
『捌』 如何编写一个简易网络爬虫
运行下这段代码看看效果 这是最简单的爬虫了
importurllib.request
url='http://www.mafengwo.cn/group/s.php'
fp=urllib.request.urlopen(url)
mybytes=fp.read()
mystr=mybytes.decode("utf8")#说明接收的数据是UTF-8格式专(这样子可以解析和显示中属文)
fp.close()
print(mystr)