神经网络博客
❶ 如何用9行Python代码编写一个简易神经网络
学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了Andrew Trask写得一篇精彩的博客,我做到了!下面贴出那九行代码:在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。
首先,神经网络是什么?人脑由几千亿由突触相互连接的细胞(神经元)组成。突触传入足够的兴奋就会引起神经元的兴奋。这个过程被称为“思考”。我们可以在计算机上写一个神经网络来模拟这个过程。不需要在生物分子水平模拟人脑,只需模拟更高层级的规则。我们使用矩阵(二维数据表格)这一数学工具,并且为了简单明了,只模拟一个有3个输入和一个输出的神经元。
我们将训练神经元解决下面的问题。前四个例子被称作训练集。你发现规律了吗?‘?’是0还是1?你可能发现了,输出总是等于输入中最左列的值。所以‘?’应该是1。
训练过程
但是如何使我们的神经元回答正确呢?赋予每个输入一个权重,可以是一个正的或负的数字。拥有较大正(或负)权重的输入将决定神经元的输出。首先设置每个权重的初始值为一个随机数字,然后开始训练过程:
取一个训练样本的输入,使用权重调整它们,通过一个特殊的公式计算神经元的输出。
计算误差,即神经元的输出与训练样本中的期待输出之间的差值。
根据误差略微地调整权重。
重复这个过程1万次。最终权重将会变为符合训练集的一个最优解。如果使用神经元考虑这种规律的一个新情形,它将会给出一个很棒的预测。
这个过程就是back propagation。
计算神经元输出的公式
你可能会想,计算神经元输出的公式是什么?首先,计算神经元输入的加权和,即接着使之规范化,结果在0,1之间。为此使用一个数学函数--Sigmoid函数:Sigmoid函数的图形是一条“S”状的曲线。把第一个方程代入第二个,计算神经元输出的最终公式为:你可能注意到了,为了简单,我们没有引入最低兴奋阈值。
调整权重的公式
我们在训练时不断调整权重。但是怎么调整呢?可以使用“Error Weighted Derivative”公式:为什么使用这个公式?首先,我们想使调整和误差的大小成比例。其次,乘以输入(0或1),如果输入是0,权重就不会调整。最后,乘以Sigmoid曲线的斜率(图4)。为了理解最后一条,考虑这些:
我们使用Sigmoid曲线计算神经元的输出
如果输出是一个大的正(或负)数,这意味着神经元采用这种(或另一种)方式
从图四可以看出,在较大数值处,Sigmoid曲线斜率小
如果神经元认为当前权重是正确的,就不会对它进行很大调整。乘以Sigmoid曲线斜率便可以实现这一点
Sigmoid曲线的斜率可以通过求导得到:把第二个等式代入第一个等式里,得到调整权重的最终公式:当然有其他公式,它们可以使神经元学习得更快,但是这个公式的优点是非常简单。
构造Python代码
虽然我们没有使用神经网络库,但是将导入Python数学库numpy里的4个方法。分别是:
exp--自然指数
array--创建矩阵
dot--进行矩阵乘法
random--产生随机数
比如, 我们可以使用array()方法表示前面展示的训练集:“.T”方法用于矩阵转置(行变列)。所以,计算机这样存储数字:我觉得我们可以开始构建更优美的源代码了。给出这个源代码后,我会做一个总结。
我对每一行源代码都添加了注释来解释所有内容。注意在每次迭代时,我们同时处理所有训练集数据。所以变量都是矩阵(二维数据表格)。下面是一个用Python写地完整的示例代码。
我们做到了!我们用Python构建了一个简单的神经网络!
首先神经网络对自己赋予随机权重,然后使用训练集训练自己。接着,它考虑一种新的情形[1, 0, 0]并且预测了0.99993704。正确答案是1。非常接近!
传统计算机程序通常不会学习。而神经网络却能自己学习,适应并对新情形做出反应,这是多么神奇,就像人类一样。
❷ 卷积神经网络LeNet-5结构卷积采样中加偏置Bx的作用是什么
简单的讲吧
h(x)=f(wx+b)
上式子就是神经元所表示的函数,x表示输入,w表示权重,b表示偏置,f表示激活函数,h(x)表示输出。
训练卷积神经网络的过程就是不断调整权重w与偏置b的过程,以使其输出h(x)达到预期值。
权重w与偏置b就相当于神经元的记忆。
至于你说的为什么要偏置b可以看看这个博客http://blog.csdn.net/xwd18280820053/article/details/70681750
从其根本上讲,就是不加偏置b的话,上面的函数就必定经过原点,进行分类的适用范围就少了不是吗
❸ 卷积神经网络和深度神经网络的区别是什么
卷积抄神经网络是深度神经网袭络中的一种,深度神经网络还有DBN,RBN,AD等,deeplearning tutorial 是个很不错的东西,还有网络余凯教授的一些论文,csdn的一些博客还不错。还有一些框架theano,caffe等都是挺有用的,目前只看了theano,但听说企业都是用caffe
作者:尹川东
来源:知乎
❹ python 神经网络预测 持续性预测
学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了Andrew Trask写得一篇精彩的博客,我做到了!下面贴出那九行代码:在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。
❺ python 神经网络库有哪些
学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了Andrew Trask写得一篇精彩的博客,我做到了!下面贴出那九行代码:
在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。
首先,神经网络是什么?人脑由几千亿由突触相互连接的细胞(神经元)组成。突触传入足够的兴奋就会引起神经元的兴奋。这个过程被称为“思考”。
我们可以在计算机上写一个神经网络来模拟这个过程。不需要在生物分子水平模拟人脑,只需模拟更高层级的规则。我们使用矩阵(二维数据表格)这一数学工具,并且为了简单明了,只模拟一个有3个输入和一个输出的神经元。
我们将训练神经元解决下面的问题。前四个例子被称作训练集。你发现规律了吗?‘?’是0还是1?
你可能发现了,输出总是等于输入中最左列的值。所以‘?’应该是1。
训练过程
但是如何使我们的神经元回答正确呢?赋予每个输入一个权重,可以是一个正的或负的数字。拥有较大正(或负)权重的输入将决定神经元的输出。首先设置每个权重的初始值为一个随机数字,然后开始训练过程:
取一个训练样本的输入,使用权重调整它们,通过一个特殊的公式计算神经元的输出。
计算误差,即神经元的输出与训练样本中的期待输出之间的差值。
根据误差略微地调整权重。
重复这个过程1万次。
最终权重将会变为符合训练集的一个最优解。如果使用神经元考虑这种规律的一个新情形,它将会给出一个很棒的预测。
这个过程就是back propagation。
计算神经元输出的公式
你可能会想,计算神经元输出的公式是什么?首先,计算神经元输入的加权和,即
接着使之规范化,结果在0,1之间。为此使用一个数学函数--Sigmoid函数:
Sigmoid函数的图形是一条“S”状的曲线。
把第一个方程代入第二个,计算神经元输出的最终公式为:
你可能注意到了,为了简单,我们没有引入最低兴奋阈值。
调整权重的公式
我们在训练时不断调整权重。但是怎么调整呢?可以使用“Error Weighted Derivative”公式:
为什么使用这个公式?首先,我们想使调整和误差的大小成比例。其次,乘以输入(0或1),如果输入是0,权重就不会调整。最后,乘以Sigmoid曲线的斜率(图4)。为了理解最后一条,考虑这些:
我们使用Sigmoid曲线计算神经元的输出
如果输出是一个大的正(或负)数,这意味着神经元采用这种(或另一种)方式
从图四可以看出,在较大数值处,Sigmoid曲线斜率小
如果神经元认为当前权重是正确的,就不会对它进行很大调整。乘以Sigmoid曲线斜率便可以实现这一点
Sigmoid曲线的斜率可以通过求导得到:
把第二个等式代入第一个等式里,得到调整权重的最终公式:
当然有其他公式,它们可以使神经元学习得更快,但是这个公式的优点是非常简单。
构造Python代码
虽然我们没有使用神经网络库,但是将导入Python数学库numpy里的4个方法。分别是:
exp--自然指数
array--创建矩阵
dot--进行矩阵乘法
random--产生随机数
比如, 我们可以使用array()方法表示前面展示的训练集:
“.T”方法用于矩阵转置(行变列)。所以,计算机这样存储数字:
我觉得我们可以开始构建更优美的源代码了。给出这个源代码后,我会做一个总结。
我对每一行源代码都添加了注释来解释所有内容。注意在每次迭代时,我们同时处理所有训练集数据。所以变量都是矩阵(二维数据表格)。下面是一个用Python写地完整的示例代码。
结语
试着在命令行运行神经网络:
你应该看到这样的结果:
我们做到了!我们用Python构建了一个简单的神经网络!
首先神经网络对自己赋予随机权重,然后使用训练集训练自己。接着,它考虑一种新的情形[1, 0, 0]并且预测了0.99993704。正确答案是1。非常接近!
传统计算机程序通常不会学习。而神经网络却能自己学习,适应并对新情形做出反应,这是多么神奇,就像人类一样。
❻ 如何计算卷积神经网络中接受野尺寸博客
通过对信号与线性系统中离散卷积及其运算方法的分析,研究序列形式的离散信号的卷积运算过程,在图解法基础上提出了较为简便的运算方法———列表法.此列表法与图解法所得结果完全相同,却使运算过程大为简化
❼ 用python编写的神经网络结果怎么可视化
学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了Andrew Trask写得一篇精彩的博客,我做到了!下面贴出那九行代码:
在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。
❽ 有卷积神经网络/循环神经网络的matlab编程书籍吗,求推荐,能分享最好
推荐书籍:《MATLAB深度学习 机器学习、神经网络与人工智能》
作 者 :(美)Phil Kim著;敖富江,杜静,周浩译
出版发行 : 北京:清华大学出版社 , 2018.03
本书共6章,内容包括:机器学习、神经网络、多层神经网络的训练、
神经网络与分类问题、深度学习、卷积神经网络。
❾ javascript可以写出神经网络吗
神经网络是一个算法。用什么语言都可以写的。不过js的效率不高,精度也差点,用的人少。不过用来玩玩也够用了。
一般机器学习都用python,有很多开源项目可以使用,不必从头造轮胎。拿来就可以用,所以建议用python,python和js其实也差不太多。想要从事机器学习方面的,建议从python入手。算法什么一般都是别人写好的,直接拿来用就行,没必要自己重新写。你不是算法大师,你创造不出什么新的算法。把现有的算法都弄明白,足够干很多事情了。