光子路由
⑴ 我刚怀孕,我办公室里有一台发射功率为200mW的无线路由器,距离我约1.5米 请问这会影宝宝的健康吗
不会的,日常生活接触到的电磁波不会对健康产生影响。无线路由器从功率到能量强度都太低了。你要知道可见光也是电磁波啊,单个光子的能量强度比路由器的大太多了,而且功率也不是一个数量级。一个灯泡的功率怎么也得十多瓦吧,更不要说是阳光了,照在身上都是烫的。你见过晒太阳影响胎儿发育的吗?电磁辐射只有波长小于一定长度才会对健康产生影响。到紫外线的范围会晒伤皮肤,要到x射线,伽马射线的波段才会对胎儿产生影响,生活中几乎接触不到。
⑵ 光子时隙路由(PSR),PSR是什么意思
primary side regulation 原边反馈/原边调节/初级端调节 你这个MINI PSR, 可能是采用PSR技术的微型控制器,微型继电器,或者微型开关电源。
客服24号为你解答。
⑶ 量子 光子。生物计算机什么时候能普及
据我所知,
量子计算机加拿大已经开发出来(D-wave),而且目前清华也已开发出量子路由器
光子计算机和生物计算机我现在不敢妄下结论。
⑷ 光路交换有哪些实现方式
光交换,Photonic Switching
光交换是指不经过任何光/电转换,将输入端光信号直接交换到任意的光输出端。光交换是全光网络的关键技术之一。在现代通信网中,全光网是未来宽带通信网的发展方向。全光网可以克服电子交换在容量上的瓶颈限制;可以大量节省建网成本;可以大大提高网络的灵活性和可靠性。光交换技术也可以分为光路交换和分组交换。由于技术上的原因,目前还主要是开发光路交换,但今后发展方向将是分组光交换。
当你打开电脑,给你远方的朋友发了一个电子邮件,你的邮件是如何传递到他手中的呢。其实,你的邮件会被转换为电信号,经过层层转接(交换),最终传递到对方的电脑后,再还原为文字,他就可以看到你的问候啦。为什么要把邮件转换为电信号再进行交换呢?那是因为电路中的设备,只能交换电信号,而不能直接交换文字。
现在,假设我们的网络中增加了几台光设备,你的邮件怎样才能交换过去这几台光设备呢?首先,邮件转换而成的电信号必须被转换为光信号,然后才能在光设备中交换(即转接)。如果再进一步,我们终端的接入设备也使用了光设备,例如光modem,现在整个网络中全部是光设备、光纤线路,这样就构成了全光网络。 在全光网络中,所有的信息交换都是光交换。这个时候,你的邮件就不需要经过任何光/电转换,将直接被转换为光信号,经过层层转接(交换),最终传递到对方的电脑,还原为文字。
在“光纤通信”术语中,我们了解到,光纤通信的优势在于巨大的信息容量和极强的抗干扰能力,其优越的性能早已得到证实,并且在现代通信系统中逐步取代以往电子线路为主要组成的通信网络。 传统通信网络和光纤网络并存时存在光电变换的过程,并且二者的结合受限于电子器件,光电交换信息的容量决定于电子部分的工作速度,本来带宽较大的光纤网络在进行光电交换时就变得狭窄了,致使整个网络的带宽也随之受限。因此在光通信网络中需要在交换节点上直接进行光交换而省去光电变换的过程,这样才能释放光纤的通信带宽,实现其通信容量大和通信速率高的优点。所以光交换技术倍受瞩目,被认为是新一代宽带技术中最重要的部分。
光交换技术是指不经过任何光/电转换,在光域直接将输入光信号交换到不同的输出端。光交换技术可分成光路光交换类型和分组光交换类型,前者可利用OADM、OXC等设备来实现,而后者对光部件的性能要求更高。由于2001年后研制的光逻辑器件的功能还较简单,不能完成控制部分复杂的逻辑处理功能,因此国际上现有的分组光交换单元还要由电信号来控制,即所谓的电控光交换。随着光器件技术的发展,光交换技术的最终发展趋势将是光控光交换。
光路交换系统所涉及的技术有空分交换技术、时分交换技术、波分/频分交换技术、码分交换技术和复合型交换技术,其中空分交换技术包括波导空分和自由空分光交换技术。光分组交换系统所涉及的技术主要包括:光分组交换技术、光突发交换技术、光标记分组交换技术、光子时隙路由技术等。
空分交换单元是光交换的基本组件,实际上在波长路由型或B&S型中都要用到空分交换,现已研制了多种空分开关组件。MEMS有不少优点,但其动作速度为毫秒级,可用于 完成电路交换的OXC,SOA则开关速度更快,又便于集成,有较好的应用前景。
光分组交换可以有同步动作与异步动作方式。同步方式采用时隙化和等长分组,每个入 端分组要经过同步后进入交换结构。同步方式易于实现缓冲管理、交换动作和竞争消除,吞 吐量较高,但由于需要同步电路,硬件较复杂;异步方式则不要求各入端分组对齐后再进入 交换结构,分组可以不等长,不需要同步电路而成本较低,灵活性高,但由于竞争机会增多 而导致吞吐量下降。
光路交换技术已经实用化。光分组交换技术2010年以前主要是在实验室内进行研究与功能实现,确保用户与用户之间的信号传输与交换全部采用光波技术。其中,光分组交换技术和光突发交换技术是光交换中的最有开发价值的热点技术,也是全光网络的核心技术,它将有着广泛的市场应用前景。
⑸ 光子能量床是不是骗局揭秘
可以很负责任地告诉你,光子能量床与中医理论没有任何关系,更与光子没有任何关系,这顶多就算是个配置高一点的“电热毯”。
光子是电磁辐射的载体,而在量子场论中光子被认为是电磁相互作用的媒介子。 光子静止质量为零。光子以光速运动,并具有能量、动量、质量。
另外,光子媒介子,其本身没有什么实际的效用,但它可以传递能量,一个只拥有光子的床,是如何产生能量的呢?又是如何操控光子吸收或发出的呢?
⑹ 光子换ip安装手机还是电脑
1、二者抄公用一个动态IP,而路由袭器为每台电脑分配了个局域网静态IP。
2、动态IP是路由器联网的时候随机获得的,每次联网获得一个,而且基本上不可能一样。
3、只要路由器重新连接一次网络IP就换一次,哪怕在不重启路由器的情况下,路由器也会不定时的重新联网,自己的IP照样更换。
⑺ 路由器放在卧室对人有影响吗
3. 配图:建议在回答中添加与内容相关的图片,图片不可包含推广信息,不可含有血腥、黄色、迷信等作弊信息。
⑻ 什么是光子网格 来个准确点的答案
蒲Ъ扑(E-science)[1]。它将位于不同地理位置的科学仪器、高性能计算机、分布式数据库、传感器、远程设备等组合起来,以解决复杂的科学问题,如全球气候模拟、高能物理、基因图谱的测绘、核试验模拟、新药的研制、虚拟专家会诊、大规模信息和决策支持系统等。网格技术使人们能够共享计算资源、存储资源和相关服务,因此它在天文、航空航天、交通、汽车制造、气象、钢铁生成、核反应堆等诸多领域的科研计划和产业发展中起着至关重要的作用。在网格应用中,传感器、远程设备、高性能计算机及可视化设备之间需要实时传送terabyte甚至petabyte量级的海量数据,网络在网格应用中占有十分重要的地位。传统互联网无法提供低延时保证下海量数据的高速传输,同时其尽力而为的服务方式无法满足用户的QoS要求。因此,构建在传统互联网上的网格应用存在着诸多的局限性,如数据传输速度慢、可靠性差、用户交互性差、使用界面不够友善等,极大地影响了应用系统的效率。光子网格(opticalgrid)是近年来在上述背景下发展起来的一种新兴技术[2~3]。其基本思想是将分布在不同地理位置的高性能并行计算机、计算机集群、大型存储设备、高清晰显示设备、大型科学仪器以及各种类型的个人计算机、服务器等通过光网络相互关联起来。由于光网络具有大带宽、高度透明、低延时、低成本、高可靠性和动态带宽调整能力,因此光子网格在满足用户共享网格信息资源的同时,还可为网格应用提供海量数据的快速传输、高可靠性管理及资源的灵活调度和控制。光子网格网络的实施,可突破网格应用中的网络瓶颈问题,使网格用户能够与高端计算资源保持同步并维持令人满意的互动功能,从而加速应用领域的科研进程,促进相关产业的发展。另一方面,光子网格的实施,使得高性能计算资源、存储资源及科学仪器的拥有者能够更有效地拓展应用市场,提高资源的利用率。由此可见,光子网格是使网格应用真正走向实用的可行技术。2 光子网格产生的背景近年来,随着大规模科学计算应用的不断发展,其对计算机处理能力、存储能力及高性能可视化的要求在不断增加。计算机处理或存储能力受技术及成本等因素的制约,为每个用户配备高性能计算、存储及可视化设备既不经济也不现实。一种可行的解决方法是将计算及存储任务分配给不同的计算机,通过共享不同研究机构的计算、存储及可视化资源来实现大规模科学计算及可视化应用。这种方法可以有效地节省成本,提高资源的利用率。与此同时,当今科学计算问题的复杂性在不断增加,它需要不同领域、不同国家的科学家共同协作才能取得突破性的成果。因此,必须构建一个高速网络将这些科学研究工作者、高性能计算及存储设备、高精密仪器及可视化设备关联起来,实现不同地理位置之间海量数据的高效传送。上述应用导致了对网络的连通性及带宽要求的不断增加。光纤及光网络传输设备的大范围敷设及广泛应用为互联高性能计算机、大型存储设备、高清晰显示设备及大型科学仪器提供了可能。目前,在10Gbit/s及更高速率上,与IP交换机相比,光交换机具有更低的功耗和成本。光网络可以提供低成本、高带宽、高可靠性光连接,已被绝大多数研究机构甚至一些个人用户所接受。光子网格即是在上述背景下产生的,它通过光网络将终端用户、计算、存储等资源关联起来,从而实现远程海量数据的高速传输。3光子网格研究的关键问题光子网格不等于简单地用光网络来提供大数据传输。要有效地支持网格应用,传统的光通信网络及网格技术面临着一系列的挑战。首先,要支持网格应用,需要为大量的用户和终端设备提供从Mbit/s至Tbit/s量级的传输带宽。用户对带宽的请求具有突发性、并行性、大规模、多种粒度并存的特点,而光网络的带宽资源及网格的计算与存储资源均是有限的。很显然,为每个用户任务提供专用的光通路既不经济也不现实。因此,光通信系统需要支持不同类型、多粒度、突发性带宽需求,具有按需分配带宽的能力;提供组播和广播能力;同时,系统为满足应用需求,还需要为用户或应用提供自组织、自管理和自控制分布式网络资源的能力,支持灵活、快速的通道建立。其次,网格应用不同于通信网络上的点到点通信业务,它具有分布式、多任务流的工作特点,多个任务可以分配至不同的计算资源上并行运行,不同的任务分配方式会导致不同的光网络资源分配方式。即使计算资源分配方案是确定的,由于光通道源、宿节点对之间可以有不同的路由选择,因此光网络资源将有不同的调度方案。而不同的任务分配方法又会导致不同的任务完成时间。因此,要在给定的限制条件下高效地完成一个给定的业务,系统必须支持大规模的分布式并行网络服务,必须合理地描述各业务流程之间的相互关系,并通过一种全新的方式来协同调度计算资源及光网络资源,否则将直接导致系统运行效率及资源利用率的降低。再者,目前网格计算在完成资源发现、任务调度的过程中,通常不考虑网络资源的限制及可用性,并且缺少从网络中获取可用的网络资源信息的发现机制。而在实际应用中,网络资源是一个影响系统效率和应用功效的重要因素。因此,必须寻找一种新的资源描述、资源发现及资源更新机制,以实现对计算资源和网络资源的统一管理和合理利用。最后,网格应用的多业务流、大数据量特性要求通信网络具有更高的安全性及数据正确性保证。虽然网格具有一定的容错机制,网络也具有一定的保护/恢复能力,但是如何根据用户的QoS需求,通过光网络和网格的协同操作来实现更高级别的系统容错,以保证网络的安全性及网格用户与通信网络接口的安全性,也是需要解决的问题。针对上述关键问题,国内外研究机构及相关学者就光子网格及其应用重点从以下几个方面开展了研究。·光子网格体系结构及实现技术:重点研究建造光子网格的技术、光子网格的基本组成与功能、光子网格各组成部分的相互关系、各部分集成的方式或方法以及它们与网格应用之间的相互关系。·控制与管理协议:重点研究光子网格的控制及管理机制,包括用户网络接口、计算资源调用及控制机制、光网络突发带宽的动态调用及调整、信令和路由协议、域间和层间控制协议、光子网格中间件的接口技术及实现方法等。·光子网格资源发现及调度机制:重点研究光子网格环境下网格信息资源和光网络资源的描述、注册、发布、更新、服务部署、资源发现和资源调度机制,并在此基础上研究不同工作模式下网格信息资源与光网络资源的协同优化调度机制、实现算法及性能指标分析。·光子网格容错及安全访问机制:重点研究光子网格权限管理机制、用户身份认证技术以及跨域调度的安全和权限管理技术,研究在光子网格发生光纤链路中断、设备节点故障、服务器宕机或服务程序中断情况下,如何设立不同等级的容错策略,在保障数据传输的准确性和及时性的同时,使用户察觉不到系统故障,以满足不同用户的QoS要求。·业务模型及应用实验:重点研究多种网格应用模型下业务类型的分类和整理方法,对不同类型业务,根据用户的QoS要求,制订不同的业务等级机制,给出不同类型、不同等级下业务工作流的描述方法,并提供一种辅助用户进行流程定义、生成描述文件的可视化工具,在此基础上针对高性能计算及可视化、大规模协同设计、实时数据传输等典型应用,探讨多业务应用模式下光子网格的实现技术、应用流程和发展前景。由此可见,构建一个新型的网络架构,集成网络、网格信息资源和服务,实现对终端用户、网络资源和网格信息资源的协同管理,无论在理论研究或实际应用中都存在很多问题有待进一步探讨。4光子网格研究进展目前,国内外相关机构已在光子网格领域开展了一系列研究工作,具有代表性的研究计划或项目包括:·美国的OptiPuter项目[4],它通过多个波长来互连计算机集群系统、可视化及协同操作工具,并通过扩展的GMPLS协议及接口实现对光网络的控制;·由日本和美国合作研究的G-lambda项目[5],其目的是在网格资源调度器(gridresourcescheler,GRS)和网络资源管理(network resource management,NRM)系统之间建立一个标准的Web服务接口(GNS-WSI),以保证GRS和NRM之间信息的协同交互,并在此基础上实现动态跨域连接的建立及相关应用;·加拿大CA*net4研究网络的UCLP(usercontrolled lightpath)计划[6],其目标是倡导“用户使能的网络”,旨在为用户提供动态分配网络资源的功能,授予用户更大的能力革新基于网络的应用;·欧盟的Phosphorus项目[7],其目的是设计和实现一种新的网络服务平面结构,以提供网格网络服务,实现对网络和非网络(计算、存储)资源的集成管理。与此同时,国际标准化组织,如互联网工程任务组(IETF)、分布式管理任务组(DMTF)、开放网格论坛(OGF),就网格计算的网络应用和编程环境、体系结构、数据管理、信息系统和性能、P2P、调度和资源管理以及安全等问题开展了一系列研究。OGF的网格高性能网络(gridhighperformancenetwork,GHPN)研究组已提出多个协议草案,如面向网格的光网络基础结构(draft-ggf-ghpn-opticalnets-2)、网格基础结构的联网问题(draft-ggf-ghpn-netissues-4)、传送协议综述(draft-ggf-ghpn-transportsurvey-1)、网格网络服务的用例(draft-ggf-ghpn-netservices-usecases)和网格网络服务(draft-ggf-ghpn-netservices-2)以及网格光突发交换网络(draft-ggf-ghpn-GOBS)等。全球光网格论坛(GLIF)也在近期就光网络控制平面及网格网络接口技术启动了一系列的标准化研究工作。此外,一些企业(如HP、IBM、Intel等)也在大力开展光子网格相关技术及应用研究(如云计算、云存储等),他们在世界各地正在投巨资建立数据中心,这些都对光子网格技术及应用起到了或多或少的推动作用。中国也对光子网格技术给予了高度重视,国家“863”计划、国家自然科学基金已设立多个项目开展了相关技术的研究,目前一些重要的研究技术包括:光网络集成计算环境[8,9]、网格与网络资源协同调度[10,11]、光子网格容错技术等[12]。目前常见的光子网格体系结构主要有:基于密集波分复用、暗光纤和低成本光交换机的波长网格;基于光突发交换网络(OBS)的网格;基于自动交换光网络(ASON)的网格。图1所示为典型的基于ASON的光子网格体系结构。该体系结构框架分成3个层次。第1层为应用层,包括所有运行在光子网格上的分布式应用。第2层为服务层,是该体系结构的实体,包括工作流和网格中间件两个部分。工作流封装多种不同的应用业务并对外发布服务。网格中间件负责向下调度、封装资源,具有资源监控、资源发现、资源调度、容错及安全控制等多种功能。第3层为物理资源层,它分为两个部分:一部分为传统的网格信息资源,包括计算资源、存储资源、显示设备等;另一部分为光子网格特有的资源,包括端口资源、节点资源、链路带宽资源、光路资源等。其基本工作流程为:首先,服务层通过相关接口获取物理资源层的相关信息;当服务层接收到应用层的用户请求时,它调用资源管理和调度模块,将计算、存储、显示等任务分配至不同的可用资源上,当需要进行数据传送时,调用光网络的控制平面,动态地建立光通道连接。通过上述步骤,可有效地实现资源的最优化利用并最大限度地满足用户的QoS需求。5光子网格技术的应用众所周知,E-science对很多领域的科研计划和产业发展起着至关重要的作用,例如:天文领域中的行星流体与磁流体动力学计算;新一代无毒、无污染运载火箭的计算和仿真;飞机设计中数值风洞、载荷疲劳计算;汽车制造中的虚拟制造、整车空气动力学设计;钢铁生产中钢板碰撞性能计算、钢管成型仿真分析;核反应堆堆芯热工水力分析、核反应堆保护和控制分析、核级设备应力分析与抗震力学分析等。在这些应用中,位于不同区域的用户需要共享数据资源、进行大规模协同计算和分析并实现大数据流的数据交互和传送。一个典型的光子网格应用实例是欧洲原子能研究机构CERN开展的高能物理实验,它的目标是处理大型粒子对撞机源源不断产生的petabyte量级实验数据。这些数据的分析和处理超出了目前世界上任何一台超级计算机或集群系统的能力,因此,CERN计算机中心负责将这些数据通过高速网络分配给欧洲、北美、日本等国的区域中心,后者再将任务进一步分解到物理学家的桌面上,通过不同区域物理学家的计算和协同分析来共同完成相关实验。目前,已有位于世界60多个国家和地区的近万名科学家参加到该实验中,不同区域间采用的是10Gbit/s的光网络通道进行数据交互和传输。另一个应用例子是实时甚长基线干涉测量法(electronic-,e-VLBI)应用。e-VLBI是采用网络将天文望远镜的观测数据实时传送到数据处理中心进行处理的射电干涉技术。它在航天器精密跟踪、航天测控、精密时间比对、深空观测、人造地球卫星、月球探测器、太阳系行星际探测器等领域均有重要的科学意义和实用价值。在下一代e-VLBI系统中,其观测站的射电望远镜的采样速率将达到10 Gbit/s,数据处理中心的数据汇聚速率将达到40 Gbit/s,数据需要从位于偏远地区的观测站通过超长距离的高速光网络实时传送至数据处理中心进行相关处理。面对上述应用需求,欧洲、美国、日本、韩国、澳大利亚等国的科学家正在开展一系列基于高速光网络的e-VLBI技术研究,如欧洲EXPRES研究计划和东亚e-VLBI研究计划。美国自然科学基金资助的GRAGON研究项目也针对e-VLBI应用就光通路动态建立、大文件数据传输等进行了相关研究及现场实验[13]。光子网格可以突破E-science应用的网络瓶颈,使得高性能计算广泛应用成为现实,用户和用户之间、用户和高性能计算机之间可方便、实时地实现数据交换和信息互动,这些将加速用户的科研进程,促进相关产业的发展,给科研工作者及高性能计算资源的拥有者带来光明的前景。光子网格可用来管理分布在各地的贵重仪器,通过提供远程访问仪器设备的手段,可提高仪器的利用率,大大方便用户的使用。同时,它还可以用于构造网络化虚拟现实环境,实现对高性能计算结果或数据库的可视化,使分布在各地的使用者能够在相同的虚拟空间协同工作。该环境可以广泛应用于交互式科学可视化、医疗、教育、训练、艺术、娱乐、工业设计、信息可视化等许多领域,如远程医疗、远程教学、虚拟历史博物馆、协同学习环境等。从上述分析可以看出,光子网格具有广阔的应用前景。光子网格代表着光传送网发展的一个方向,体现了网络和业务应用融合的一个大趋势。光子网格技术及应用体系研究将有助于推动网格应用的发展和光网络技术的进步。可以预见,光子网格具有十分重要的理论研究价值和社会意义,同时有着广阔的市场应用前景,在经济建设和社会发展中将起着极为重要的作用。
⑼ 要上网时电脑提示678是什么意思
移动宽带用户登录时显示错误代码678通常是线路问题导致,建议可从以下几方面进回行排障处理:
1、重启答光猫、插紧光纤接头;
2、判断光猫指示灯状态是否正常,若异常(光猫亮红灯/PON灯闪烁/指示灯异常),可拨打10086进行报障;
3、去掉路由器,直接连接光猫拨号连接上网,如拨号连接失败,可通过10086宽带报障中心进一步反馈处理;
4、重新配置路由器尝试。