零剪切速率黏度
1. 塑料成型,这题的最大剪切速率和牛顿粘度怎么推导的
你可以看一下《工程流体力学》,管壁处切应力最大,压力降是由于最大切应力造成的,故管壁的面积与切应力之积=等于管的截面积与压力降之积。根据牛顿剪切定律,切应力=牛顿黏度与速度的变化率之积。
2. 粘度会随剪切速率的升高而升高吗
随着剪切速率的增加,粘度变小,
称为假塑性。这是因为高分子流动是通过链段的相继跃迁完成的。
在流动曲线图上可以发现,在低剪切速率下,粘度不随剪切速率变化,随着剪切速率提高,表观粘度减小,
继续提高,进入第二牛顿区,粘度恒定,具体来说就是缠结点理论。
3. 如何理解高分子流体的表观粘度与剪切速率的关系
表观粘度是在一定剪切速率下的剪切应力与剪切速率比值
4. 转速和剪切速率有什么关系 是 剪切速率=剪切速率系数×转速 吗 可是这个粘度计的说明书上并没有剪切速率
那是不是扭矩呢
5. 如何从流动曲线上求出零剪切黏度
零剪切黏度:高分子溶液中的分子或熔融态的高分子宛如乱成一团版柔软而纠缠的线权球,虽然每一条分子链都在努力蠕动着,但是由于分子链与链之间的纠缠点却有效的维系着彼此结构的稳定。此所以初期很小的剪力(shear force)并无法超越结构强度,结构依然保持着,是以黏度居高不下,类似牛顿流体(黏度恒定不随剪率而变化),所以称为“零剪切黏度(zero-shear viscosity)”
通俗地说,零剪切粘度就是剪切速率为零时的粘度,一般用η0表示,实验上无法直接测得,需要外推或用很低剪切速率的粘度近似。
6. 一般文献中测得的粘度是在多少剪切速率下的
乙醇在25摄氏度黏度是1.074cP
密度在25摄氏度时0.790。
乙醇是一种有机物,俗称酒精,结构简式CH?CH?OH、C?H?OH或版EtOH,分子式C?H?O,是带有一个羟权基的饱和一元醇,在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有酒香的气味,并略带刺激。有酒的气味和刺激的辛辣滋味,微甘。
乙醇液体密度是0.789g/cm3(20℃) ,乙醇气体密度为1.59kg/m3,沸点是78.3℃,熔点是-114.1℃,易燃,其蒸气能与空气形成爆炸性混合物,能与水以任意比互溶。能与氯仿、乙醚、甲醇、丙酮和其他多数有机溶剂混溶,相对密度(d15.56)0.816。
7. 如何计算黏度
一.粘度 计算
度量流体粘性大小的物理量。又称粘性系数、动力粘度,记为μ。牛顿粘性定律指出,在纯剪切流动中相邻两流体层之间的剪应力(或粘性摩擦应力)为式中dv/dy为垂直流动方向的法向速度梯度。粘度数值上等于单位速度梯度下流体所受的剪应力。速度梯度也表示流体运动中的角变形率,故粘度也表示剪应力与角变形率之间比值关系。按国际单位制,粘度的单位为帕·秒。有时也用泊或厘泊(1泊=10-1帕·秒,1厘泊= 10-2泊)。粘度是流体的一种属性,不同流体的粘度数值不同。同种流体的粘度显著地与温度有关,而与压强几乎无关。气体的粘度随温度升高而增大,液体则减小。在温度T<2000开时,气体粘度可用萨特兰公式计算:μ/μ0=(T/T0)3/2(T0+B)/(T+B),式中T0、μ0为参考温度及相应粘度,B为与气体种类有关的常数,空气的B=110.4开;或用幂次公式 :μ/μ0=(T/T0)n,指数n随气体种类和温度而变,对于空气,在90开<T<300开范围可取为 8/ρ。水的粘度可按下式计算:μ=0.01779/(1+0.03368t+0.0002210t2),式中t为摄氏温度。粘度也可通过实验求得,如用粘度计测量。在流体力学的许多公式中,粘度常与密度ρ以μ/ρ的组合形式出现,故定义v=μ/ρ,由于v的单位米2/秒中只有运动学单位,故称运动粘度。
粘度是指液体受外力作用移动时,分子间产生的内磨擦力的量度。
运动粘度表示液体在重力作用下流动时内磨擦力的量度,其值为相同温度下的动力粘度与其密度之比,在国际单位制中以米2/秒表示。习惯用厘斯(cSt)为单位。1厘斯=10-6米2/秒=1毫米2/秒。
粘度
动态粘度
绝对粘度
粘度系数
流体内部抵抗流动的阻力,用对流体的剪切应力与剪切速率之比表示。单位为泊[帕。秒]
注:对于牛顿流体,剪切应力与剪切速率之比为常数,称为牛顿粘度,对于非牛顿流体,剪切应力与剪切速率之比随剪切应力而变化,所得的粘度称在相应剪切应力下的“表观粘度”。塑料属于后一种情况。
不同流体的粘度差别很大。在压强为101.325kPa、温度为20℃的条件下,空气、水和甘油的动力粘度和运动粘度为:
空气 μ=17.9×10-6 Pa·s, v=14.8×10-6 m2/s
水 μ=1.01×10-3 Pa·s, v=1.01×10-6 m2/s
甘油 μ=1.499Pa·s, v=1.19×10-3 m2/s
二.空气密度计算
p=ρRT
p为气体的绝对压力(Pa),T为气体的温度(K), R为气体常数(干空气为R=287J/(Kg*K))
ρ为气体的密度(kg/m^3)
对于湿空气, 计算时应采用湿空气的R.
如果是粗略估算, 用干空气的R代替, 误差也不太大
8. 流体的剪切速率是什么意思
流体的剪切速率是指流体的流动速度相对圆流道半径的变化速率。
一个液体回的剪切答应力和剪切速率之间的关系,决定了其流动行为。以剪切应力为纵坐标,剪切速率为横坐标的曲线图,称为流动特性曲线图。以绝对黏度为纵坐标,剪切速率为横坐标的曲线图,称为黏度特性曲线图。 液体的流动(黏度)特性曲线,可分为牛顿型和非牛顿型两大类。
牛顿型是一种液体,在一定温度下具有一定的黏度,在剪切速率变化时,黏度保持恒定。许多涂料原料如水、溶剂、矿物油和低分子量树脂溶液都是这种液体,然而涂料成品却大都是非牛顿型的。
(8)零剪切速率黏度扩展阅读
根据流体粘性的差别,可将流体分为两大类,即理想流体和实际流体。自然界中存在的流体都具有粘性,统称为粘性流体或实际流体。对于完全没有粘性的流体称为理想流体。这种流体仅是一种假想,实际并不存在。
但是,引进理想流体的概念是有实际意义的。因为,粘性的问题十分复杂,影响因素很多,这对研究实际流体的带来很大的困难。因此,常常先把问题简化为不考虑粘性因素的理想流体,找出规律后再考虑粘性的影响进行修正。
9. 什么是零剪切黏度特性黏度比浓黏度
零剪切黏度:话说熔融态的高分子宛如乱成一团柔软而纠缠的线球,虽然每一条分子链都在努力蠕动着,但是由于分子链与链之间的纠缠点却有效的维系着彼此结构的稳定。此所以初期很小的剪力(shear force)并无法超越结构强度,结构依然保持着,是以黏度居高不下,类似牛顿流体(黏度恒定不随剪率而变化),所以称为“零剪切黏度(zero-shear viscosity)”
特性粘度;intrinsic viscosity
高分子溶液粘度的最常用的表示方法。
定义: 当高分子溶液浓度趋于零时的比浓粘度。即表示单个分子对溶液粘度的贡献,是反映高分子特性的粘度,其值不随浓度而变。常以[η]表示,常用的单位是分升/克。由于特性粘度与高分子的相对分子质量存在着定量的关系,所以常用[η]的数值来求取相对分子质量,或作为分子量的量度。其值常用毛细管粘度计测得。
特性黏度(intrinsic viscosity),又称特性黏数(intrinsic viscosity number)。
比浓黏度:设η为聚合物溶液的黏度。η0为纯溶剂的黏度,定义两黏度之差,η-η0。与纯溶剂黏度η0的比值为聚合物溶液的增比黏度,以ηsp表示,即:ηsp=(η-η0)/η0。定义,ηsp/c为聚合物的比浓黏度。ηsp0/c是测定聚合物分子量的基本数据之一。
10. 黏度的计算公式
黏度是测量流体内在摩擦力的所获得的数值。当某一层流体的移动会受到另一层流体移动的影响时,此摩擦力显得极为重要。摩擦力愈大,我们就必须施予更大的力量以造成流体的移动,此力量即称为 ”剪切(shear)”。剪切发生的条件为当流体发生物理性地移动或分散,如倾倒、散布、喷雾、混合等等。高黏度的流体比低黏度的材料需要更大的力量才能造成流体的流动。
牛顿以图4-1的模式来定义流体的黏度。两不同平面但平行的流体,拥有相同的面积”A”,相隔距离”dx”,且以不同流速”V1”和”V2”往相同方向流动,牛顿假设保持此不同流速的力量正比于流体的相对速度或速度梯度,即:
F/A = ηdv/dx
其中η与材料性质有关,我们称为”黏度”。
速度梯度,dv/dx,为测量中间层的相对速度,其描述出液体所受到的剪切,我们将它称为”剪速(shear rate)”,以S表示;其单位为时间倒数(sec-1)。
F/A项代表了单位面积下,剪切所造成的合力,称为”剪力(shear stress)”,以F代表;其单位为”达因每平方公分(dyne/cm2)”。
使用这些符号,黏度计可以下列数学式定义:
η=黏度=F/S=剪力/剪速
黏度的基本单位为 ”poise”。我们定义一材料在剪力为1达因每平方公分、剪速为1 sec-1下的黏度为100 poise。测量黏度时,你可能会遭遇到黏度的单位为 “Pa˙s” 或 “mPa˙s” 的情况,此为国际标准系统,且有时较被公制命名所接受。1 Pa˙s等于10 poise;1 mPa˙s等于1 cp。
牛顿假设所有的材料在固定温度下,黏度与剪速是没有相关的,亦即两倍的力量可以帮助流体移动两倍的速度。
就我们所知,牛顿的假设只有部分是正确的。
牛顿流体
牛顿称具有此形式流动行为的所有流体,皆称为”牛顿(Newtonian)”,然而这只是你可能遭遇到的流体中的其中一种而已。牛顿流体的特性可参考图4-2;图A显示剪力(F)和剪速(S)之间为线性关系;图B显示在不同剪速下,黏度皆保持一定。典型的牛顿流体为水与稀薄的机油。
上述代表的意义即为在固定温度下,不论你所使用的黏度计型号、转子、转速为何,牛顿流体的黏度皆保持一定。标准Brookfield黏度值为以Brookfield仪器在某一剪速范围内所测之值,这就是为什么牛顿流体可以在所有我们的黏度计型号下操作。牛顿流体明显地为最容易测量的流体-只要拿出你的黏度计并操作它即可。不幸的是,更常见且更复杂的流体-非牛顿流体,我们将在下一节中介绍。
非牛顿流体概略的定义为F/S的关系不为常数,亦即当施予不同的剪速,剪力并不随着相同比例变化(或甚至同一方向)。这些流体的黏度会受到不同剪速的影响,同时,不同型号黏度计的设定参数、转子、转速都会影响到非牛顿流体的黏度值。此测量的黏度值称为流体的”表观黏度(apparent viscosity)”,其值为正确的只有当实验的参数值被正确的设定且精准的测得。
非牛顿流体流动可以想象成流体为不同形状和大小的分子所组成,当它们流经彼此,亦即流动发生时,需要多少力量才能移动它们将取决于它们的大小、形状及黏着性。在不同的剪速下,排列的方式将会不同,而且需要更多或更少的合力才能保持运动。
辨别不同非牛顿流体的行为,可由剪速的差异得到流体黏度的变化,常见非牛顿流体的形式包括:
拟塑性的(pseudoplastic):此形式流体的特性为当剪速增加时,会伴随着流速的减少,其可能为最常见的非牛顿流体。拟塑性流体包括油漆、乳液和各种不同形式的流体。此类流体的行为有时候可称为”shear thinning”。
膨胀性的(diltant):膨胀性的流体其特性为流速随着剪速的增加而增加。虽然膨胀性流体不如拟塑性流体常见,然而膨胀性流体常可由存在有不会聚集固体的流体中看到,如泥浆、糖果合成物、玉米淀粉类与水的混合物以及沙/水混合物。此类流体的行为也可称为”shear thickening”。
塑性的(plastic):此类流体的行为就如同固体处在静电的环境中。在流体流动前,我们就必须先施予流体某一力量,此力量称为“屈服力(yield value)”。此类流体典型的例子为蕃茄酱,其产值造成蕃茄酱无法直接从罐子中倒出,除非我们先摇动或敲击。当产值超过上限值时,流体开始流动。塑性流体包含有牛顿流体、拟塑性流体、膨胀性流体的特性。
到目前为止我们只有讨论非牛顿流体剪速的效应,当我们同时考虑时间效应时,有会有什么问题发生?此问题使得我们必须讨论其它两类非牛顿流体:”摇变性的(thixotropic)” 和 “流变性的(rheopectic