internet2初始运行速率可以达到
Ⅰ Internet2的初始速率是多少
Internet2是高级Internet开发大学合作组(UCAID)的一个项目,它可以连接到现在的Internet上版,但是它的宗旨还是组权建一个为其成员组织服务的专用的网络,初始运行速率可达10Gbps。
Ⅱ 计算机网络知识提问
44.b 45.c 46.a 47.a 48.d 49.b 50.c 51.c 52.c 53.c
54.d 55.d 56.c 57.d 58.b 59.d 60.b 61.b 62.d 63.c
Ⅲ 如何确定我的网络是否能都达到千兆的传输速率
很简单 网线是超五类的一般都是没问题的 我们可以右键点网卡状态 那里可以显示传输速率的 千兆是 1.0Gbps 网卡一般会亮橘黄色的灯 百兆是绿灯
Ⅳ 求计算机网络 答案
一:第一阶段可以追溯到20世纪50年代。那时人们开始将彼此独立发展的计算机技术与通信技术结合起来,完成了数据通信与计算机通信网络的研究,为计算机网络的出现做好了技术准备,奠定了理论基础。
二:计算机网络的分类方式有很多种,可以按地理范围、拓扑结构、传输速率和传输介质等分类。
⑴按按照计算机之间的距离和网络覆盖面来分可分为
①局域网LAN(Local Area Network)
局域网地理范围一般几百米到10km之内,属于小范围内的连网。如一个建筑物内、一个学校内、一个工厂的厂区内等。局域网的组建简单、灵活,使用方便。
②城域网MAN(Metropolitan Area Network)
城域网地理范围可从几十公里到上百公里,可覆盖一个城市或地区,是一种中等形式的网络。
③广域网WAN(Wide Area Network)
广域网地理范围一般在几千公里左右,属于大范围连网。如几个城市,一个或几个国家,是网络系统中的最大型的网络,能实现大范围的资源共享,如国际性的Internet网络。
⑵按传输速率分类
网络的传输速率有快有慢,传输速率快的称高速网,传输速率慢的称低速网。传输速率的单位是b/s(每秒比特数,英文缩写为bps)。一般将传输速率在Kb/s—Mb/s范围的网络称低速网,在Mb/s—Gb/s范围的网称高速网。也可以将Kb/s网称低速网,将Mb/s网称中速网,将Gb/s网称高速网。
网络的传输速率与网络的带宽有直接关系。带宽是指传输信道的宽度,带宽的单位是Hz(赫兹)。按照传输信道的宽度可分为窄带网和宽带网。一般将KHz—MHz带宽的网称为窄带网,将MHz—GHz的网称为宽带网,也可以将kHz带宽的网称窄带网,将MHz带宽的网称中带网,将GHz带宽的网称宽带网。通常情况下,高速网就是宽带网,低速网就是窄带网。
⑶按传输介质分类
传输介质是指数据传输系统中发送装置和接受装置间的物理媒体,按其物理形态可以划分为有线和无线两大类。
①有线网
传输介质采用有线介质连接的网络称为有线网,常用的有线传输介质有双绞线、同轴电缆和光导纤维。
●双绞线是由两根绝缘金属线互相缠绕而成,这样的一对线作为一条通信线路,由四对双绞线构成双绞线电缆。双绞线点到点的通信距离一般不能超过100m。目前,计算机网络上使用的双绞线按其传输速率分为三类线、五类线、六类线、七类线,传输速率在10Mbps到600Mbps之间,双绞线电缆的连接器一般为RJ-45。
●同轴电缆由内、外两个导体组成,内导体可以由单股或多股线组成,外导体一般由金属编织网组成。内、外导体之间有绝缘材料,其阻抗为50Ω。同轴电缆分为粗缆和细缆,粗缆用DB-15连接器,细缆用BNC和T连接器。
●光缆由两层折射率不同的材料组成。内层是具有高折射率的玻璃单根纤维体组成,外层包一层折射率较低的材料。光缆的传输形式分为单模传输和多模传输,单模传输性能优于多模传输。所以,光缆分为单模光缆和多模光缆,单模光缆传送距离为几十公里,多模光缆为几公里。光缆的传输速率可达到每秒几百兆位。光缆用ST或SC连接器。光缆的优点是不会受到电磁的干扰,传输的距离也比电缆远,传输速率高。光缆的安装和维护比较困难,需要专用的设备。
②无线网
采用无线介质连接的网络称为无线网。目前无线网主要采用三种技术:微波通信,红外线通信和激光通信。这三种技术都是以大气为介质的。其中微波通信用途最广,目前的卫星网就是一种特殊形式的微波通信,它利用地球同步卫星作中继站来转发微波信号,一个同步卫星可以覆盖地球的三分之一以上表面,三个同步卫星就可以覆盖地球上全部通信区域。
⑷按拓扑结构分类
计算机网络的物理连接形式叫做网络的物理拓扑结构。连接在网络上的计算机、大容量的外存、高速打印机等设备均可看作是网络上的一个节点,也称为工作站。计算机网络中常用的拓扑结构有总线型、星型、环型等。
①总线拓扑结构
总线拓扑结构是一种共享通路的物理结构。这种结构中总线具有信息的双向传输功能,普遍用于局域网的连接,总线一般采用同轴电缆或双绞线。
总线拓扑结构的优点是:安装容易,扩充或删除一个节点很容易,不需停止网络的正常工作,节点的故障不会殃及系统。由于各个节点共用一个总线作为数据通路,信道的利用率高。但总线结构也有其缺点:由于信道共享,连接的节点不宜过多,并且总线自身的故障可以导致系统的崩溃。
②星型拓扑结构
星型拓扑结构是一种以中央节点为中心,把若干外围节点连接起来的辐射式互联结构。这种结构适用于局域网,特别是近年来连接的局域网大都采用这种连接方式。这种连接方式以双绞线或同轴电缆作连接线路。
星型拓扑结构的特点是:安装容易,结构简单,费用低,通常以集线器(Hub)作为中央节点,便于维护和管理。中央节点的正常运行对网络系统来说是至关重要的。
③环型拓扑结构
环型拓扑结构是将网络节点连接成闭合结构。信号顺着一个方向从一台设备传到另一台设备,每一台设备都配有一个收发器,信息在每台设备上的延时时间是固定的。
这种结构特别适用于实时控制的局域网系统。
环型拓扑结构的特点是:安装容易,费用较低,电缆故障容易查找和排除。有些网络系统为了提高通信效率和可靠性,采用了双环结构,即在原有的单环上再套一个环,使每个节点都具有两个接收通道。环型网络的弱点是,当节点发生故障时,整个网络就不能正常工作。
④树型拓扑结构
树型拓扑结构就像一棵“根”朝上的树,与总线拓扑结构相比,主要区别在于总线拓扑结构中没有“根”。这种拓扑结构的网络一般采用同轴电缆,用于军事单位、政府部门等上、下界限相当严格和层次分明的部门。
树型拓扑结构的特点:优点是容易扩展、故障也容易分离处理,缺点是整个网络对根的依赖性很大,一旦网络的根发生故障,整个系统就不能正常工作。
三:计算机网络,是指将地理位置不同的具有独立功能的多台计算机及其外部设备,通过通信线路连接起来,在网络操作系统,网络管理软件及网络通信协议的管理和协调下,实现资源共享和信息传递的计算机系统。简单地说,计算机网络就是通过电缆、电话线或无线通讯将两台以上的计算机互连起来的集合
四:通信子网和资源子网
五:1969年12月, Internet的前身--美国的ARPA网投入运行,它标志着我们常称的计算机网络的兴起。这个计算机互联的网络系统是一种分组交换网。分组交换技术使计算机网络的概念、结构和网络设计方面都发生了根本性的变化,它为后来的计算机网络打下了基础。
Ⅳ 什么是Internet2
internet2 San Diego (CA) – 在2007年秋季的会员会议上,Internet 2协会宣布已经完成了下一代互联网Internet 2的基础架构,并且已经开始运行,它可以面向科研机构和教育人员提供100Gb/秒的传输速度.
新的光学基础设施提供了一个独特的,可扩展的平台基础架构,在其之上建立的并行网络可以同时服务于不同的目的,如研究网络和远程医疗.该网络将继续提供一种先进的互联网协议(IP)网络,支持IPv6,组播和其它高性能网络技术.含结构图
[编辑本段]Internet2的来历
由于Internet的商业化,使其业务量增多,从而导致了它的性能上的降低,在这种情况下,一些大学申请了国家科学基金,以建立一个全新的,独立的nsfnet内部使用的网络,相当于一个专用的Internet,供这些大学使用。1996年10月,这个想法以Internet2的形式付诸实施。
[编辑本段]什么是Internet 2
Internet2(I2)是由美国120多所大学、协会、公司和政府机构共同努力建设的网络,它的目的是满足高等教育与科研的需要,开发下一代互联网高级网络应用项目。它并不是要取代现有的互联网,也不是为普通用户新建另一个网络。
Internet2计划要求在1998年秋季进行实际运作试验。Internet2的应用将贯穿高等院校的各个方面,有些是项目协作,有些是数字化图书馆,有些将促进研究,有些能用于远程学习。
Internet2也为各种不同服务政策提供了试验场所,比如怎样对预留带宽进行收费等。同时也是衡量各种技术对GigaPOP效能的场所,比如本地超高速缓存和复制服务器,以及卫星上行和下行链路对提高网络性能的作用。
除上述试验外,合作环境还将用于实时音频、视频、文本和白板讨论。还有支持新的协作方式的3D虚拟共享环境。远程医疗,包括远程诊断和监视也是 Internet2努力实现的目标。大量的交互式图形/多媒体应用也将是NGI的主要候选项目,其中包括科学研究可视化、合作型虚拟现实(VR)和3D虚 拟环境等应用。
[编辑本段]国际Internet 2研究
从1996年起,美国开始了下一代互联网研究与建设。美国国家科学基金会设立了'下一代Internet'研究计划NGI,支持大学和科研单位建立了高速网络试验床vBNS(Very High Speed Backbone Network Service) ,进行高速计算机网络及其应用的研究。1998年美国100多所大学联合成立UCAID(University Corporation for Advanced Internet Development),从事Internet2研究计划。UCAID建设了另一个独立的高速网络试验床Abilene,并于1999年1月开始提供服务。
美国政府的'下一代Internet'研究计划NGI和美国UCAID从事的Internet2研 究计划,都是在这个高速计算机试验网上开展下一代高速计算机网络及其典型应用的研究,构造一个全新概念的新一代计算机互连网络,为美国的教育和科研提供世 界最先进的信息基础设施,并保持美国在高速计算机网络及其应用领域的技术优势,从而保证下一世纪美国在科学和经济领域的竞争力。英、德、法、日、加等发达 国家目前除了拥有政府投资建设和运行的大规模教育和科研网络以外,也都建立了研究高速计算机网络及其典型应用技术的高速网试验床。
Internet2(I2)是指由美国120多所大学、协会、公司和政府机构共同努力建设的网络,它的目的是满足高等教育与科研的需要,开发下一代互联网高级网络应用项目。但在某种程度上,INTERNET2已经成为全球下一代互联网建设的代表名词。
Internet2计划要求在1998年秋季进行实际运作试验。Internet2的应用将贯穿高等院校的各个方面,有些是项目协作,有些是数字化图书馆,有些将促进研究,有些能用于远程学习。
Internet2也为各种不同服务政策提供了试验场所,比如怎样对预留带宽进行收费等。同时也是衡量各种技术对GigaPOP效能的场所,比如本地超高速缓存和复制服务器,以及卫星上行和下行链路对提高网络性能的作用。
除上述试验外,合作环境还将用于实时音频、视频、文本和白板讨论。还有支持新的协作方式的3D虚拟共享环境。远程医疗,包括远程诊断和监视也是Internet2努力实现的目标。大量的交互式图形/多媒体应用也将是NGI的主要候选项目,其中包括科学研究可视化、合作型虚拟现实(VR)和3D虚拟环境等应用。
Internet2是高级Internet开发大学合作组(UCAID)的一个项目。UCAID是一个非赢利组织,Internet2可以连接到现在的Internet上,初始运行速率可达10Gbps。
Ⅵ 怎么设置网络速度
你的复网络带宽(网速?)是由电制信部门决定的。不是什么更改设置就能改变的。
倒是迅雷可以配置上传下载速度(但最大也不会超过你的网络带宽的。呵呵)
打开迅雷主程序-工具-配置-连接-“将下载速度限制为”调到最大。
“将上传速度限制为” 调到一个合适的数字,一般100K左右就可以。这个数字太小,会影响BT下载速度。
Ⅶ 快速以太网的传输速率可达多少
以太网原理
共享型
不管是总线型或环形以太网,还是使用集线器的星型以太网都属于共享型局域网。网上所有节点,包括服务器和工作站共享整个网络的10M带宽(即网络上每秒钟可传输10兆比特的数据)。
以太网的传输方法,也就是以太网的介质访问控制(MAC)技术称为:载波监听多路存取和冲突检测(CSMA/CD),下面我们分步来说明其原理:
1、载波监听:当你所在的网站(包括服务器和工作站)要向另一个网站发送信息时,先监听网络信道上有无信息正在传输,信道是否空闲。
2、信道忙碌:如果发现网络信道正忙,则等待,直到发现网络信道空闲为止。
3、信道空闲:如果发现网络信道空闲,则向网上发送信息。由于整个网络信道为共享总线结构,网上所有网站都能够收到你所发出的信息,所以网站向网络信道发送信息也称为“广播”。但只有你想要发送数据的网站识别和接收这些信息。
4、冲突检测:网站发送信息的同时,还要监听网络信道,检测是否有另一台网站同时在发送信息。如果有,两个网站发送的信息会产生碰撞,即产生冲突,从而使数据信息包被破坏。
5、遇忙停发:如果发送信息的网站检测到网上的冲突,则立即停止该此网络信息发送,并向网上发送一个“冲突”信号,让其它网站也发现该冲突,从而摈弃可能一直在接收的受损的信息包。
6、多路存取:如果发送信息的网站因“碰撞冲突”而停止发送,就需等待一段时间,再回到第一步,重新开始载波监听和发送,直到数据成功发送为止。
所有共享型以太网上的网站,都是经过上述六步步骤,进行数据传输的。
由于CSMA/CD介质访问控制法只允许在同一时间里,只能有一个网站发送信息,其它网站只能收听和等待,否则就会产生“碰撞”。所以当共享型网络用户增加时,每个网站在发送信息时产生“碰撞”的概率增大,当网络用户增加到一定数目后,网站发送信息产生的“碰撞”会越来越多,想发送信息的网站不断地进行:监听-Λ发送-Λ碰撞-Λ停止发送-Λ等待-Λ再监听-Λ再发送……
反复的冲突碰撞使网站大部分时间在等待网络信道的空闲,网络信道则大部分时间充斥着冲突信息,真正传输信息的时间大大减少,使网络效率低下。因此共享型网络只适合一些中小型单位用户使用,而且只适合传输数据信息。如早期用于文件和打印服务共享的Novell网。
交换型
为了解决共享型以太网的问题,于是产生了交换型以太网。交换型以太网的特点是使用交换机代替Hub,交换机可以使多个用户同时使用此网络。这样一来,如果您使用的是10Mb交换型以太网, 则每个用户就可以独自享用10Mbps的传输速率而不用去考虑其 他用户的使用情况, 因此网络的实际带宽得到大幅度提高, 可以实现高速的数据传输。如果您选用的是快速交换型以太网或者千兆交换型以太网的话,那么一个用户就可以独享100Mbps甚至是1000Mbps的数据传输率,任何应用都不会为带宽而担忧了。当然,以太网交换机的价格比Hub自然是要贵得多。
类似传统的桥接器,交换机提供了许多网络互联功能。交换机能经济地将网络分成小的冲突网域,为每个工作站提供更高的带宽。协议的透明性使得交换机在软件配置简单的情况下直接安装在多协议网络中;交换机使用现有的电缆、中继器、集线器和工作站的网卡,不必作高层的硬件升级;交换机对工作站是透明的,这样管理开销低廉,简化了网络节点的增加、移动和网络变化的操作。
利用专门设计的集成电路可使交换机以线路速率在所有的端口并行转发信息,提供了比传统桥接器高得多的操作性能。如理论上单个以太网端口对含有64个八进制数的数据包,可提供14880bps的传输速率。这意味着一台具有12个端口、支持6道并行数据流的“线路速率”以太网交换器必须提供89280bps 的总体吞吐率(6道信息流X14880bps/道信息流)。专用集成电路技术使得交换器在更多端口的情况下以上述性能运行,其端口造价低于传统型桥接器。
如果我们需要在同一区域放置和使用多台计算机的话,毫无疑问使用以太网将会成倍的提高我们的工作效率。通过搭建一个以太网络,我们能够在个人计算机与文件服务器之间传输信息,通过远程打印机打印本地文档,运行安装在其它计算机上的应用程序,共享高速的互联网接入。到目前为止,以太网已经广泛应用于大、中、小型企业,它的普及性和高速的传输速率已经使其成为事实上的网络连接标准。
以太网规范具体规定了如何在临近的物理区域,即局域网内,实现计算机之间的数据传送。如果希望将一台计算机接入局域网成为整个网络的一部分,该计算机需要具备一个用于分割和包装数据的网络接口以及一个用于连接线缆的连接端口。连接端口一般被集成到系统的主板上或做为内置网卡将数据发送到网络上,同时接收来自网络上其它计算机的数据。
以太网不仅仅是一种硬件规范,同时它还是一种通讯协议,可以控制如何在相互连接的计算机中传送数据。通过以太网技术连接的计算机首先把需要发送的信息分割成小的许多小的数据包,然后再通过网线发送出去。我们可以把数据包想象为一个个的行李箱,加上标签之后,通过运输通经发送到不同的目的城市。除了需要传送的信息之外,数据包中还包含用于指定接收方的目标地址和用于标明发送方的源地址。
以太网接口使用一种被称为 Carrier Sense Multiple Access With Collision Detection即CSMA/CD(载波监听多路存取和冲突检测) 的协议发送数据包。该协议为避免多台计算机同时发送数据所造成的数据丢失和网络阻塞,规定在任意时刻内网络上只能有一台计算机向外发送数据,每一台计算机在发送数据之前必须等待网络上的空闲间隔时间。当一个被发送出的数据包到达接收方时,发送方会收到确认信息,然后等待下一次网络空闲时间发送下一个数据包。所有在数据包传输路径上的设备都会读取数据包内的目标地址,以判断是否接收数据包或继续转发数据包。
局域网中,相互连接的计算机和网线布局被成为网络的拓扑结构。以太网规范能够支持多种拓扑类型,其中使用最广泛的就是星型拓扑结构。在星型网络中,只需要一个集线器,每台计算机(又称节点)都直接连接到网络中的 HUB 集线器上。 HUB 可以接收从一个节点发送的数据包然后分发到其它节点上。通常, HUB 可以划分为被动式 HUB 和交换式 HUB 两种类型。其中,被动式 HUB 只能简单的接收数据包,然后再发送到所有与之连接的网络节点上;而交换式 HUB 则能够对包含在数据包中的目标地址进行分析,从而将数据包准确的发送到实际的接收方。
除星型拓扑结构之外,我们也可以使用总线型的以太网拓扑结构。总线类型下,所有的计算机都最终连接到一条网络的主干线上。相比较而言,星型拓扑结构比总线型拓扑结构更易于管理和维护,网线的使用量更少,费用更低。
以太网的规范中还对数据传输的速率和所需要使用的网线类型进行了规定。在很长一段时间内,能够每秒钟传送 10 兆数据的 10 兆以太网成为最快速,最普及的以太网应用。后来,随着网络规模和复杂程度的不断增加,信息传送量的不断提高, 100 兆以太网(又称快速以太网)成为最佳的选择。从 10 兆以太网到 100 兆以太网,数据传输的速度提升了 10 倍。为了实现高速的传输速率,快速以太网采用了高质量的网线以保证数据包在高速的传输过程中信号不会减弱。近来,传输速率高达每秒钟 1 千兆的千兆以太网逐渐引起越来越多的人的关注。同时,也已经有人开始着手研究更高速的 10G 以太网技术。这些超高速的网络连接技术将主要被应用于创建大规模的网络。
Ⅷ 有关互联网的问题
INTERNET2极速网络应用广
为了解决Internet上的拥挤及长时间等候,美国政府和高科技公司、大学都在致力开发新的网络。目前的Internet2正是其中最具代表性的项目。
Internet2的基本目的是开发先进的Internet技术和应用,满足高等学校进行网上科学研究和教学的需要。它其中一个关键任务就是加速先进的Internet技术的推广普及。Internet2的应用前景包括医疗保健、国家安全、远程教学、能源研究等现代社会的所有领域。
在Internet2的研究计划中,大学与教育系统一直处于主导位置。因为目前的高等教育对于网络的要求已远远超过Internet所能提供的范围。
作为Internet发源地的美国,一九九六年十月宣布启动“Internet”NGI(NextGenerationIn-ternet)研究计划,并且建立了连接美国主要大学和研究单位的Internet试验网vBNS。其目的是研究下世纪高速电脑网络的基本理论,构造全新概念的新一代互联网体系结构。
中国方面目前也在进行相关的下一代网络建设。这个类似Internet2的计划也是由国内高校发起的。但中国的下一代网络基础更为雄厚,因为中国的网络起步比美国要迟得多,所以采用的网络技术亦更为先进。多数大学校园网的主网都采用ATM和千兆以太网,并由光纤构成网络主,可迅速发展为支持高带宽的网络。
家中宽带到底该多快!揭开ADSL速度之谜
(2004-08-25 10:55:10)
经常使用ADSL的用户,你知道ADSL的真正速度吗?带着这个疑问我们将问题一步一步展开。
很多用户反映,ADSL下载速率并没有达到标称的512K,脑通过ADSL接入网络后,下载时会出现一个下载速率指示条,上面显示的下载速率一般为50 KByte/s左右!这其实是个换算关系不清引起的误会。
1,512K ADSL是什么意思?
512K=512Kbps=512K bits/s=64K bytes/s
我想这个换算应该没什么问题。
2,64K bytes/s意味着什么?
这个64K的真正含义是“个人用户所能独享的最大下载带宽”
那么这又是什么意思呢,不知道现在有没有人注意过电信ADSL安装的申请表,上面的带宽项目写的是都是“不高于512K”,“不高于8M”等等,也就是说我们在正常的情况下可以拥有最多不超过64K的专有带宽。
注意是“不高于”,那么也就是说很多时候我们的专有带宽可能小于64K,那有又是为什么呢?
事实上,中国电信的ADSL是运行在ATM上面,ATM到chinanet边缘路由器带宽是155M,每一个边缘路由器可以连接3000用户,如果这些用户同时上网,那么每个用户其实只有50k bit/s的带宽,也就是7K bytes/s,加上路由器衰减,那么最终可能只有普通modem的速度了。
当然以上只是假想的情况,毕竟3000人同时连在一台边缘路由器上面几乎是不可能的,电信也不会让路由器满负荷连接而使得速度下降如此之巨。
但是,64K是最高专有带宽是毋庸置疑的。
3,那为什么我的512K ADSL经常可以达到100K甚至200K以上的下载速度呢?
我们搞清楚了64K是最大专有带宽,但不等于最大带宽,事实上在ADSL拨号时已经分配了实际约等于8Mbps,也就是1M bytes/s的下载带宽,只不过电信限制了我们的专有带宽最高64K,那么当路由器连接的用户较少的时候,我们可以获得一部分超过专有带宽的共享带宽(显然电信没必要让这些带宽闲置),当然512K速率的ADSL永远不可能通过占用共享带宽达到1M/s的下载速度,因为毕竟总还是有很多人在同时上网,而且电信肯定还有一些平衡负载的机制。
4,ADSL上传速度对下载的影响
TCP/IP规定,每一 封包,都需要有acknowledge讯息的回传,也就是说,传输的资料,需要有一个收到资料的讯息回复,才能决定后面的传输速度, K决定是否重新传输遗失的资料。
上行的带宽一部分就是用 泶 输 @些acknowledge(确认) Y料的,当上行负载过大的时候,就会影响acknowledge资料的传送速度,并进而影响到下载速度。这对非对称数字环路也就是ADSL这种上行带宽远小于下载带宽的连接来说影响尤为明显。
有试验证明,当上传满载时,下载速度讲变为理想速度的40%,这就可以解释为什么为什么很多朋友用BT下载的时候稍微限速反而能够获得更大的下载速度。
既然这样我们就不能要求所有的人都不限速,因为对于ADSL用户来说这是很不现实的,也是不科学的。适当的限速是正确的。
5,ADSL的速度随着连接时间的延长而逐渐降低。
前面说过ADSL再拨号的时候会建立最高理论8Mbps的下载带宽,这个带宽是永远不会改变的!不过实际上由于ADSL的噪声检测机制如果线路情况不好那么一开始建立的连接显然不可能达到理论值,可能最后是5Mbps,这个带宽也是不会改变的。
那为什么说ADSL的速度会越来越慢呢?
这是因为即使用户不关闭调制解调器的电源,有时ADSL链接也会随时中断。比如,在通信状态因噪音增加而恶化,频繁发生错误的情况下。 链接中断后,马上就会重新进行调试,并重新确定链接。不过,如果此时致使链接中断的噪音仍然存在的话,(这一般是比较大的)重新链接后的速度就会比原来更低。由于调试中所确定的链接速度是也固定的,因此即便之后噪音消失以后,链接速度也不会提高。ADSL调制解调器使用时间越长,发生这种情况的可能性就越高,所以连接速度越来越慢。
此时,如果用户重新起动调制解调器,链接就会重新确立,速度就可能由此得以提高。这一常识可用作链接速度降低后的处理对策.
当然上面说的这些情况都只是根据ADSL连接本身来讨论的,实际的情况还包括互联网状况,网站本身的响应等等。
了解了上面的知识,您或许就豁然开朗。原来512K并不是512KB呀,只有64KB,呜呜~~~你也不可能达到每秒512KB的下载速度。
真正实现ADSL的高速
解决ADSL速度时最要重视的一点就是用户主机要达到一定的配置,才能在硬件上保证ADSL接入的速度。俗话说“没有金刚钻,不揽瓷器活”,如果个人电脑的处理性能高,就可以快速运行Web浏览器与邮件软件,提高上网速度。如果安装了1Mbps的ADSL,但个人电脑却只能装Windows95或98的话,当然会觉得速度慢。尤其是内存如果只有64MB或128MB,宽带就犹如英雄无用武之处。如果更新了个人电脑,操作系统可以使用WindowsXP的话,那自然宽带接入的速度就会提高。另外,WindowsXP比原来的Windows系统需要更多的内存,建议最少也要有256MB以上的内存。如果没有能力更新个人电脑,那就增加内存,只要增加内存就能感觉到速度提高。此外,宽带接入使用的ADSL调制解调器也要支持高速度,才可以保证接入速度。
还有一些在硬件上对ADSL维护的方法,例如尽量缩短电话插座与ADSL调制解调器之间的电话线,可以尽量减少线路损耗,具体操作可以缩短电话插座与ADSL调制解调器之间的距离、加长连接调制解调器与个人电脑的网线,就不会降低速度。还有在ADSL调制解调器附近不要放置散发电磁波的办公设备(包括个人电脑)或者电视、冰箱等家电、手机都会给调制解调器带来干扰。
熟悉电脑的人都该知道,个人电脑的性能不仅取决于自身的硬件基础,后期对电脑的软件优化也同样可以成为网络飞翔的动力。一方面,系统自身的性能就可以通过现在多的有些“泛滥”的系统优化软件来提高,CPU的空置率,内存的使用率,硬盘的碎片清理等等,都可以通过软件的力量完成提高。另一方面,在宽带接入联接网络时,同样可以利用一些专门的软件进行优化,对一些网络联接设置进行随机调整,以达到最好的连接效果。
(天极网)
Ⅸ 计算机网络发展阶段
第一阶段:计算机技术与通信技术相结合,形成了初级的计算机网络模型。此阶段网络应用主要目的是提供网络通信、保障网络连通。这个阶段的网络严格说来仍然是多用户系统的变种。美国在1963年投入使用的飞机定票系统SABBRE-1就是这类系统的代表。
第二阶段:在计算机通信网络的基础上,实现了网络体系结构与协议完整的计算机网络。此阶段网络应用的主要目的是:提供网络通信、保障网络连通,网络数据共享和网络硬件设备共享。这个阶段的里程碑是美国国防部的ARPAnet网络。目前,人们通常认为它就是网络的起源,同时也是Internet的起源
第三阶段:计算机解决了计算机联网与互连标准化的问题,提出了符合计算机网络国际标准的“开放式系统互连参考模型(OSI RM)”,从而极大地促进了计算机网络技术的发展。此阶段网络应用已经发展到为企业提供信息共享服务的信息服务时代。具有代表性的系统是1985年美国国家科学基金会的NSFnet。
第四阶段:计算机网络向互连、高速、智能化和全球化发展,并且迅速得到普及,实现了全球化的广泛应用。代表作是Internet。
(9)internet2初始运行速率可以达到扩展阅读:
从逻辑功能上看,计算机网络是以传输信息为基础目的,用通信线路将多个计算机连接起来的计算机系统的集合,一个计算机网络组成包括传输介质和通信设备。
从用户角度看,计算机网络是这样定义的:存在着一个能为用户自动管理的网络操作系统。由它调用完成用户所调用的资源,而整个网络像一个大的计算机系统一样,对用户是透明的。
这个新型网络必须满足一些基本要求:
1:不是为了打电话,而是用于计算机之间的数据传送。
2:能连接不同类型的计算机。
3:所有的网络节点都同等重要,这就大大提高了网络的生存性。
4:计算机在通信时,必须有迂回路由。当链路或结点被破坏时,迂回路由能使正在进行的通信自动地找到合适的路由。
5:网络结构要尽可能地简单,但要非常可靠地传送数据。
根据这些要求,一批专家设计出了使用分组交换的新型计算机网络。而且,用电路交换来传送计算机数据,其线路的传输速率往往很低。
因为计算机数据是突发式地出现在传输线路上的,比如,当用户阅读终端屏幕上的信息或用键盘输入和编辑一份文件时或计算机正在进行处理而结果尚未返回时,宝贵的通信线路资源就被浪费了。
虽然网络类型的划分标准各种各样,但是从地理范围划分是一种大家都认可的通用网络划分标准。按这种标准可以把各种网络类型划分为局域网、城域网、广域网和互联网四种。
局域网一般来说只能是一个较小区域内,城域网是不同地区的网络互联,不过在此要说明的一点就是这里的网络划分并没有严格意义上地理范围的区分,只能是一个定性的概念。下面简要介绍这几种计算机网络。
这些非性能特征与前面介绍的性能指标有很大的关系。
(1)费用
即网络的价格(包括设计和实现的费用)。网络的性能与其价格密切相关。一般说来,网络的速率越高,其价格也越高。
(2)质量
网络的质量取决于网络中所有构件的质量,以及这些构件是怎样组成网络的。网络的质量影响到很多方面,如网络的可靠性、网络管理的简易性,以及网络的一些性能。但网络的性能与网络的质量并不是一回事,例如,有些性能也还可以的网络,运行一段时间后就出现了故障,变得无法再继续工作,说明其质量不好。高质量的网络往往价格也较高。
(3)标准化
网络的硬件和软件的设计既可以按照通用的国际标准,也可以遵循特定的专用网络标准。最好采用国际标准的设计,这样可以得到更好的互操作性,更易于升级换代和维修,也更容易得到技术上的支持。
(4)可靠性
可靠性与网络的质量和性能都有密切关系。速率更高的网络,其可靠性不一定会更差。但速率更高的网络要可靠地运行,则往往更加困难,同时所需的费用也会较高。
(5)可扩展性和可升级性
网络在构造时就应当考虑到今后可能会需要扩展(即规模扩大)和升级(即性能和版本的提高)。网络的性能越高,其扩展费用往往也越高,难度也会相应增加。
(6)易于管理和维护
网络如果没有良好的管理和维护,就很难达到和保持所设计的性能。