当前位置:首页 » 有线网络 » 光纤水听器阵列

光纤水听器阵列

发布时间: 2021-02-10 04:09:57

A. 光纤水听器的应用领域

光纤水听器主要用于海洋声学环境中的声传播、噪声、混响、海底声学特性、目标声学特性等的探测,是现代海军反潜作战、水下兵器试验、海洋石油勘探和海洋地质调查的先进探测手段。 较传统水听器相比,光纤水听器具有灵敏度高,可以探测微弱信号;抗电磁干扰和信号串扰能力强,可以远距离传输;体积小,易于布放实施,且收放容易,高可靠性,并且大规模组网。光纤水听器技术也将掀起传感器改革的新篇章,为传统的测量手段带来新风向,光纤水听器阵列对空间信号进行测量,通过对每个固定位置上的水听器测量的声信号进行信号处理,确定声源位置,实现水下探测,水下目标侦测,水下/水面目标辐射噪声测量,并应用与水下安防,地震预测,海洋石油和天然气勘探等领域,是具有自主知识产权的水下探测技术,为港口防护、水声情报搜集以及目标探测提供技术支撑。
在大规模光纤水听器阵列组装过程中,面临的最大困难是当系统中存在数以千计的大量器件时,很难保证系统的光学均衡。光学系统的失衡,将影响系统的探测性能,对平衡要求提高,将大幅度增加系统的制造成本和制造难度,而神州普惠已经发展了基于动态匹配的大容差光学均衡阵列设计与组装创新技术来解决这一问题。 在多基元的大规模光纤水听器阵列水声探测中,涉及到多通路的光信号探测和复杂的信号处理。在这方面神州普惠具有基于统一时钟和分布时差修正的高精度大容量同步信号采集控制技术、基于复合结构FPGA和多核DSP的大容量数据连续采集与并行帧结构信号处理数据交换技术、嵌入式自适应参数设定大容量光电相干信号处理技术等大规模光纤水听器阵列探测专有技术。
通过数据采集和信号处理,可以获得各个光纤水听器探测基元的数字声信号,对这些信号必须通过专门的数据库管理和通过不同的接口传输才能提供给用户使用。 大型的水声探测系统开发有较大的难度,这种开发需要声学仿真平台的支持。国内有企业研发出了声学仿真平台,提供基于软件仿真的系统级振动噪声解决方案,实现对整个复杂系统及系统内关键零件结构进行工程分析;辐射噪声分析;识别振动噪声问题及其产生的根本原因,并能够快速地评价,为后期结构优化设计提供前提保障。

B. 什么是光纤水听器阵列

光纤水听器是一种建立在光纤、光电子技术基础上的水下声信号传感器。它通过高灵敏度的光学相干检测,将水声振动转换成光信号,通过光纤传至信号处理系统提取声信号信息。它具有灵敏度高,频响特性好等特点。由于采用光纤作信息载体,适宜远距离大范围监测。

C. 光纤传感器的发展前景

光纤传感器发展现状
国内市场上,应用最为广泛的光纤传感技术当属布拉格光纤光栅和基于光时域反射的分布式传感器,这种技术基本上可以满足中低端市场的需求。而现在光谱线宽窄至2kHz的单频光纤激光器及其引申出来的最新一代光传感技术,这与传统的光纤传感有很大的区别,它可以进行超远距离的传输,精度和敏感度能达到更高的要求,这在高端市场上需求很大,21实际初,该项技术在国内尚处于立项和预研阶段。国内市场上光纤传感器应用主要在以下四种:光纤陀螺、光纤光栅传感器、光纤电流传感器和光纤水听器。下面对这四种产品分别介绍一下。
一、光纤陀螺。 光纤陀螺按原理可分为干涉型、谐振型和布里渊型,这是三代光纤陀螺的代表。第一代干涉型光纤陀螺,21实际初期,该项技术就已经成熟,适合进行批量生产和商品化;第二代谐振型光纤陀螺,暂时还处于实验室研究向实用化推进的发展阶段;第三代布里渊型,它还处于理论研究阶段。光纤陀螺结构根据所采用的光学元件有三种实现方法:小型分立元件系统、全光纤系统和集成光学元件系统。21世纪初期,分立光学元件技术已经基本退出,全光纤系统用在开环低精度、低成本的光纤陀螺中,集成光学器件陀螺由于其工艺简单、总体重复性好、成本低,所以在高精度光纤陀螺很受欢迎,是其主要实现方法。
二、光纤光栅传感器。 目前国内外传感器领域的研究热点之一光纤布拉格光栅传感器。传统光纤传感器基本上可分为两种类型:光强型和干涉型。光强型传感器的缺点在于光源不稳定,而且光纤损耗和探测器容易老化;干涉型传感器由于要求两路干涉光的光强同等,所以 需要固定参考点而导致应用不方便。21世纪初期开发的以光纤布拉格光栅为主的光纤光栅传感器可以避免出现上面两种情况,其传感信号为波长调制、复用能力强。在建筑健康检测、冲击检测、形状控制和振动阻尼检测等应用中,光纤光栅传感器是最理想的灵敏元件。光纤光栅传感器在地球动力学、航天器、电力工业和化学传感中有广泛的应用。
三、光纤电流传感器。电力工业的迅猛发展带动电力传输系统容量不断增加,运行电压等级也越来越高,电流也越来越大,这样测量起来就非常困难,这就显现出光纤电流传感器的优点了。在电力系统中,传统的用来测量电流的传感器是以电磁感应为基础,这就存在以下缺点:它容易爆炸以至引起灾难性事故;大故障电流会造成铁芯磁饱和;铁芯发生共振效应;频率响应慢;测量精度低;信号易受干扰;体积重量大、价格昂贵等等,已经很难满足新一代数字电力网的发展需要。这个时候光纤电流传感器应运而生。
四、光纤水听器。 光纤水听器主要用来测量水下声信号,它通过高灵敏度的光纤相干检测,将水声信号转换为光信号,并通过光纤传至信号处理系统进行识别。与传统水听器相比,光纤水听器具有灵敏度高、响应带宽宽、不受电磁干扰等特点,广泛用于军事和石油勘探、环境检测等领域,具有很大的发展潜力。光纤水听器按原理可分为干涉型、强度型、光栅型等。干涉型光纤水听器关键技术已经逐步发展成熟,在部分领域形成产品;光纤光栅水听器则是当前研究的热点,研究的关键技术涉及光源、光纤器件、探头技术、抗偏振衰落技术、抗相位衰落技术、信号处理技术、多路复用技术以及工程技术等。
光纤传感器技术是建立在光纤、光通信和光电子技术的基础上发展起来的,电磁干扰和腐蚀作用对它的影响很小,还能适应各种恶劣的气象环境,不要额外的电源进行供电,就可以长距离的进行传输,已成为传感器行业的研究热点。
传感器一直朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍却是倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能。光纤传感器应用于对磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和应变等物理量的测量。其应用范围十分广泛。因此我们可以说光纤传感器具有很大的市场需求,不说长久,至少在未来5年,光纤传感器将会有广阔的发展前景。
光纤传感技术及其相关技术的迅速发展,满足了各类控制装置及系统对信息的获取与传输提出的更高要求,使得各领域的自动化程度越来越高,作为系统信息获取与传输核心器件的光纤传感器的研究非常重要。光纤传感器技术发展的主要方向是:(1)多用途。即一种光纤传感器不仅只针对一种物理量,要能够对多种物理量进行同时测量。(2)提高分布式传感器的空间分辨率、灵敏度,降低其成本,设计复杂的传感器网络工程。注意分布式传感器的参数,即压力、温度,特别是化学参数(碳氢化合物、一些污染物、湿度、PH值等)对光纤的影响。(3)新型传感材料、传感技术等的开发。(4)在恶劣条件下(高温、高压、化学腐蚀)低成本传感器(支架、连接、安装)的开发和应用。(5)光纤连接器及与其它微技术结合的微光学技术。
光纤传感运用主要分为五大方向:
(1)石油和天然气——油藏监测井下的P/T传感、地震阵列、能源工业、发电厂、锅炉及蒸汽涡轮机、电力电缆、涡轮机运输、炼油厂;
(2)航空航天——喷气发动机、火箭推进系统、机身;
(3)民用基础建设——桥梁、大坝、道路、隧道、滑坡;
(4)交通运输——铁路监控、运动中的重量、运输安全;
(5)生物医学——医用温度压力、颅内压测量、微创手术、一次性探头。

D. 光纤水听器阵列会用到光准直器整列吗

光纤准直器 collimator 由尾纤与自聚焦透镜精确定位而成。它可以将光纤内的传输光转变成准直光(平行光),或将外界平行(近似平行)光耦合至单模光纤内。
主要用途:环形器、光开关、准直器阵列、MEMS光开关、无源光网络。
准直器的工作距离与光纤头和透镜间距 L相关,增加间距 L可增加工作距离,但是对一个确定的准直透镜,工作距离不能无限增加。当光纤端面在透镜焦点附近调节时,光斑尺寸变化较大,然而将光纤端面置于透镜焦点上(此时工作距离接近 0),计算所得光斑尺寸仍有参考作用,有助于估算确定的透镜参数所能得到的光斑尺寸。点精度随光纤头位置变化不大,取间距 L等于透镜焦距所得点精度可作为其他情况的近似。

E. 光纤传感技术的光纤传感技术的应用

光纤传感技术在结构工程检测中的应用 钢筋混凝土是目前非常广泛应用的材料,将光纤材料直接埋入混凝土结构内或粘贴在表面,是光纤的主要应用形式,可以检测热应力和固化、挠度、弯曲以及应力和应变等。混凝土在凝固时由于水化作用会在内部产生一个温度梯度,如果其冷却过程不均匀。热应力会使结构产生裂缝,采用光纤传感器埋入混凝土可以监测其内部温度变化,从而控制冷却速度。 混凝土构件的长期挠度和弯曲是人们感兴趣的一个力学问题,为此已研制出能测量结构弯曲和挠度的微弯应变光纤传感器,并用一根光纤连接整个结构不同位置上的传感器进行同时监测,每个传感器的位置可用OTDR来识别。光纤传感器还能探测混凝土结构内部损伤。在正常荷载作用下,由于钢筋阻止干化收缩或温度引起的体积变化都会引起裂缝,裂缝的出现和发展可以通过埋入的光纤中光传播的强度变化而测得。 光纤传感技术在桥梁检测中的应用 桥梁是一个国家的经济命脉,桥梁的建造和维护是一个国家基础设施建设的重要部分。利用光纤传感器测量振动,主要可得到桥梁的振动响应参数如频率、振幅等,其方法是:将信号光纤粘贴于桥梁内部,它随着桥梁的振动而产生振动响应, 输出光的相位作周期性的变化,则光电探测器接收到的光强也作周期性的变化。 成功的案例有:加拿大在1993年将光纤传感器预装到一座碳纤维预应力混凝土公路桥上,在桥开通后连续监测了8个月,测量了混凝土内部的整体分布应变,并用动态规化理论处理数据,准确而又快速的评估了桥梁的使用状态及寿命。1996年,美国海军实验研究中心研制了新墨西哥州I -10桥健康检测系统,它由60个FBG传感器组成,可实现动态与静态应变测量。 光纤传感技术在岩土力学与工程中的应用 岩土工程检测具有长时效性、环境复杂、具有时空限制、施工环境制约等特点,其检测工作一直是等待解决的难题。目前已有的常规的测试技术在长期的工程应用中表明,满足上述测试要求十分困难。而由于光纤传感器体积小、质量轻、不导电、反应快、抗腐蚀等诸多优良特性,使用它成为岩土力学工程的检测工具成为学者们的研究对象。下面列举一例成功应用光纤传感器检测岩土工程的成功案例: 三峡大坝坝前水温监测 三峡大坝坝体内部靠近上游面埋设有点式温度计,因埋设点位于坝体内,所测温度与实际库水温度存在一定的差异。为了能更真实地反映库水温度的变化规律,长江科学院结合坝前水温观测的实际现状,在左厂14-2坝段布设1条测温垂线,采取光纤Bargg光栅温度传感器进行监测,通过实际工程应用,光纤Bargg光栅温度传感器测量水温,可以满足水温监测的要求,且与水银温度计直接测量水温相比,结果较好。 光纤传感技术在军事上的应用 光纤传感技术在军事上同样应用广泛。光纤陀螺仪经过30多年的发展,已经广泛应用与民航机,无人机,导弹的定位和控制中。光纤水听器可以用于船舶军舰收集声音,探测越来越先进的潜艇。且近几年来,基于光纤传感技术的光纤网络安全警戒系统开始在边防及重点区域防卫中得到推广应用。目前,世界上发达国家使用的安全防卫系统就是基于分布式光纤传感网络系统的安全防卫技术。
石油和天然气:油藏监测井下的P / T传感、地震阵列、能源工业、发电厂、锅炉及蒸汽涡轮机、电力电缆、涡轮机运输、炼油厂;
航空航天:喷气发动机、火箭推进系统、机身;
民用基础建设:桥梁、大坝、道路、隧道、滑坡;
交通运输:铁路监控、运动中的重量、运输安全;
生物医学:医用温度压力、颅内压测量、微创手术、一次性探头。

热点内容
网卡了的原因 发布:2021-03-16 21:18:20 浏览:602
联通客服工作怎么样 发布:2021-03-16 21:17:49 浏览:218
路由器画图 发布:2021-03-16 21:17:21 浏览:403
大网卡收费 发布:2021-03-16 21:16:50 浏览:113
路由器免费送 发布:2021-03-16 21:16:19 浏览:985
孝昌营业厅 发布:2021-03-16 21:15:54 浏览:861
网速增速代码 发布:2021-03-16 21:15:29 浏览:194
怎么黑光纤 发布:2021-03-16 21:14:54 浏览:901
端口增大 发布:2021-03-16 21:14:20 浏览:709
开机没信号是什么原因 发布:2021-03-16 21:13:45 浏览:645