当前位置:首页 » 有线网络 » 单模光纤主导

单模光纤主导

发布时间: 2021-02-11 21:04:14

1. 光纤通信系统基本组成是什么

光发信机是实现电/光转换的光端机。它由光源、驱动器和调制器组成。其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。电端机就是常规的电子通信设备。 (2)光收信机 光收信机是实现光/电转换的光端机。 它由光检测器和光放大器组成。其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端汲去。 (3)光纤或光缆 光纤或光缆构成光的传输通路。其功能是将发信端发出的已调光信号,经过光纤或光缆的远距离传输后,耦合到收信端的光检测器上去,完成传送信息任务。 (4)中继器 中继器由光检测器、光源和判决再生电路组成。它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲近行政性。 (5)光纤连接器、耦合器等无源器件 由于光纤或光缆的长度受光纤拉制工艺和光缆施工条件的限制,且光纤的拉制长度也是有限度的(如1Km)。因此一条光纤线路可能存在多根光纤相连接的问题。于是,光纤间的连接、光纤与光端机的连接及耦合,对光纤连接器、耦合器等无源器件的使用是必不可少的。 备用系统与辅助设备 了确保系统的畅通,通常设置都有备用系统,就好比对磁盘的备份。正常情况下只有主系统工作,一旦主要系统出现故障,就可以立即切换到备用系统,这样就可以保障通信的畅通和正确无误。 辅助设备是对系统的完善,它包括监控管理系统、公务通信系统、自动倒换系统、告警处理系统、电源供给系统等。 其中,监控管理系统可对组成光纤传输系统的各种设备自动进行性能和工作状态的监测,发生故障时会自动告警并予以处理,对保护倒换系统实行自动控制。对于设有多个中继站的长途通信线路及装有通达多方向、多系统的线路维护中心局来说,集中监控是必须采用的维护手段。 近代光通信的真正发展则只是近三四十年的事,其中起主导作用的是激光器和光纤的诞生。首先是1960年Maiman发明了红宝石激光器,激光器产生的强相干光为现代光通信提供了可靠的光源。这种单波长的激光具有普通无线电波一样的特性,可对其调制而携带信息。利用激光的早期光通信也是通过大气传输的。但很快发现,许多因素如雾、雨、云,甚至一队偶然飞过的鸟,都会干扰光波的传播,因而只能作短距离通信用c显然,需要一种像射频或微波通信的电缆或波导那样的光波通信传输线,以克服这些影响,实现信息的长距离稳定传输。 1965年,E.Miller报导了出金属空心管内一系列透镜构成的透镜光波导.可避免大气传输的缺点,但田其结构太复杂且精度要求太高而不能实用。而另一方面,光导纤维的研究正在扎实进行。早在1951年就发明了医疗用玻璃纤维,但这种早期的光导纤维损耗太大(大于1000dB/km),也不能作为光通信的传输媒质.1966年,C.K.Kao和G.A.Hockman发表了对光纤通信发展具有历史意义的著名论文。他们在分析了造成光纤传输损耗高的主要原因后指出,如能完全除去玻璃中的杂质,损耗就可降到20dB/km——相当于同轴电缆的水平,那么,光纤就可用来进行光通信。在这种预想的鼓舞下,Corning公司终于在1970年制出了20dB/km损耗的光纤,从而为光纤通信的发展铺平了道路。对光纤谱特性的研究发现,它有3个低损耗的传输窗口,即850nm的短波长窗口和1300nm、1500nm的长波长窗口。而后,随着新的制造方法的出现及工艺水平的不断提高,光纤损耗不断降低。到1979年,单模光纤在1550nm波长的损耗已降到0.2dB/km,接近石英光纤的理论损耗极限。

2. fc光纤和lc的区别

这是两种不同的光纤连接器的名称。常见的光纤连接器有FC、ST、SC、LC等多种,分别是由不同的厂家推出的,具体外型及技术标准可在网上找到。

FC连接器最早是由日本NTT研制。FC是Ferrule Connector的缩写,表明其外部加强方式是采用金属套,紧固方式为螺丝扣。最早,FC类型的连接器,采用的陶瓷插针的对接。此类连接器结构简单,操作方便,制作容易,但光纤端面对微尘较为敏感,且容易产生菲涅尔反射,提高回波损耗性能较为困难。后来,对该类型连接器做了改进,采用对接端面呈球面的插针(PC),而外部结构没有改变,使得插入损耗和回波损耗性能有了较大幅度的提高。

LC型连接器是著名Bell(贝尔)研究所研究开发出来的,出现得比较晚,采用操作方便的模块化插孔(RJ)闩锁机理制成。其所采用的插针和套筒的尺寸是普通SC、FC等所用尺寸的一半,为1.25mm。这样可以提高光纤配线架中光纤连接器的密度。目前,在单模SFF方面,LC类型的连接器实际已经占据了主导地位,在多模方面的应用也增长迅速。

3. 尾纤中SC、PC、LC、FC分别是什么头

如下图所示,但MPO是高密度光纤连接器。

你这个PC是写错了吧,PC是光纤端面的研磨方式

LC (Lucent connector):小方口,常用于连接SFP光模块和预端接模块盒

SC ( Subscriber Cable):卡接式方形(大方口),常用于光纤收发器和GBIC光模块

FC(ferrule contactor)型:圆形带螺纹,常用于用于光纤配线架

ST ( Straight Tip):圆形卡口,常用于光纤配线架

MPO(Multi-fiber Push On):使用精密模具成型在MT插针中,用于高密度应用领域。

4. 光纤尾纤都是什么口叫什么型号

尾纤又叫猪尾纤,就是光缆终端盒到设备之间连接所用的光纤。

尾纤常分为单模或多模、单纤或双纤、传输距离、还有尾纤接口类型。目前市面上光纤设备常用的尾纤接口类型一般有:FC、SC、LC、ST 这四种。

第一种:FC 接口类型

FC 接头又叫圆型带螺纹接头(配线架上用的最多),是金属接头,一般在ODF 侧采用,金属接头的可插拔次数比塑料要多。

(4)单模光纤主导扩展阅读:

尾纤分为多模尾纤和单模尾纤。多模尾纤为橙色,波长为850nm,传输距离为500m,用于短距离互联。单模尾纤为黄色,波长有两种,1310nm和1550nm,传输距离分别为10km和40km。

ITU-T国际电信联盟远程通信标准化组织(ITU-T for ITU Telecommunication Standardization Sector), 规范了三种常用光纤:符合G.652规范的光纤、符合G.653规范的光纤、符合规范G.655的光纤。

5. 光纤接入网的总体要求

目前光纤的可用工作波长区有3个,即780nm窗口、1310nm窗口和1550nm窗口。鉴于OAN对成本最敏感的部分是光电器件,因而设法降低这一部分的费用是改进整个系统技术经济性能的关键。一般地说,设法采用新技术,革新工艺和规模生产是三个降低成本的主要措施。就新技术而言,大量采用平面光波电路(PLC)是主要发展趋势。那么,是否还有别的降低成本的措施?其中之一就是采用780nm波长区。主要考虑是这一波长区的光盘用激光器已经大规模生产,成本很低。至于常规单模现象可以用滤模的办法来消除,并不复杂。780nm光纤损耗稍大,但对接入网环境也不是个大问题。然而,目前国际上尚无标准支持工作在这一波长区的元器件,也无法用最坏值法来进行传输设计。此外,由于存在多模传输和高损耗传输问题,致使系统复杂性增加,部分抵消了其成本优势。因而从长远看,应用780nm波长区的近期经济优势似乎并不足以构成长期发展方向的理由。
ITU-T最近刚刚通过的新建议G.982决定只使用1310nm窗口和1550nm窗口,其中1310nm波长区将首先启用,主要支持电话和其他2Mbit/s以下的窄带双向通信业务,其工作范围应尽量宽,以便容纳未来的WDM的应用。按照这一原则,其可用波长的下限主要受限于光纤截止波长和光纤衰减系数,其上限主要受限于1385nm处OH根吸收峰的影响。据分析,由于光纤的截止波长过高可能会引起模噪声损伤,这是一种乘性噪声,一旦产生就无法去掉,因此必须彻底杜绝。基本措施就是保证系统中最短的无连接光缆(例如维修光缆段)的有效截止波不超过系统工作波长的下限,以确保单模传输条件。按照目前的ITU-T标准参数,由模噪声所限定的系统工作波长的下限,以确保单模传输条件。按照目前的ITU-T标准参数,由模噪声所限定的系统工作波长的下限为1260nm。
根据典型敷设光缆的衰减系数,考虑了现场光纤接头的损耗和光缆温度系数余度(-50℃~+60℃),并假设1385nm的OH根吸收峰为3dB/km,当光缆最大衰减系数按0.65dB/km计时,波长范围为(1260~1360)nm。
根据上述分析,最经济合理1310nm波长区工作范围为(1260~1360)nm。这一波长范围与G.957所规范的STM-1等级局内通信接口波长范围一致,可适用于多纵模激光器和发光二极管。
对于1550nm波长区,除了暂时可以用作异波长双工(详见后文)的下行方向外,主要用于未来的新业务,特别是宽带图像业务。该波长区的下限主要受限于1385nm处OH根吸收峰的影响,而上限主要受限于红外吸收损耗和弯曲损耗的影响。若按0.25dB/km光纤衰减系数计,则可用波长范围为(1480~1580)nm,而将1600nm以上保留给OT-DR或其他测试技术使用。当然,如果在将来准备采用EDFA时,则工作波长区还要进一步受限于EDFA的增益平坦区范围,系统工作范围还会进一步变窄。G.982所规定的一个传输窄带交互型业务的波长分配方案如表1所示。 表1:窄带交互型业务的波长分配 双向传输方式 光纤数 波长区 传输技术 将来实施可能 单工 2 上下行皆310nm区 SDM 半双工 1 上下行皆310nm区 TCM 异波长双工 1 上行1310nm区
下行1310nm区 WDM 上行1310nm区高端
下行1310nm区低端 双工 1 1310nm或
1550nm区 SCM 光纤类型从大的方面看可以划分为单模光纤和多模光纤两类,鉴于单模光纤的损耗低、带宽宽、制造简单和价格低廉,在公用电信网(包括接入网)中已成为主导光纤类型。新敷设的光纤几乎全部采用单模光纤,已不再考虑多模光纤。单模光纤又分为G.652、G.653和G.654三种,考虑到成本及网络的维护和统一性,ITU-T规定在接入网中只使用生产量最大,价格最便宜,性能优良的标准G.652光纤。
有些国家主张也应允许使用G.653光纤,理由是色散小,与光纤放大器结合在1.55μm波长区可望提供更长的色散受散受限距离和扩大用户数,有一定优势。然而ITU-T认为在接入网环境下,目前的重点是2Mbit/s速率以下的业务,即使考虑宽带业务后其线路传输速率也不大可能超过2.4Gbit/s,因而足以覆盖现行规划的接入网最长传输距离。再考虑到G.653光纤的成本偏高以及将来开放波分复用系统方面的困难,因而目前不准备使用这种光纤。至于G.654光纤就更不会考虑使用了。 传输技术主要完成连接OLT和ONU的功能,其连接方式可以为点到点,也可以为点到多点方式。至于反向的用户接入方式也可以有多种,主要有时分多址接入(TDMA)和副载波多址接入(SCMA)两种。目前的ITU-T标准是以TDMA方式为基础的,但不排除其他接入方式。下面就几种主要的双向传输方式作一简要介绍。
(1)空分复用(SDM)
空分复用(SDM)就是双向通信的每一方向各使用一根光纤的通信方式,即所谓单工方式,其原理如图1所示。在SDM方式下两个方向的信号在两根完全独立的光纤中传输,互不影响,传输性能最佳,系统设计也最简单,但需要一对光纤才能完成双向传输的任务,以传输距离较长时不够经济。对于OLT与ONU相距很近的应用场合,则由于光纤价格的不断下降,SDM方式仍不失为一种可以考虑的双向传输方案。最后,由于两个方向的信号传输通路互相独立,因而对于光源波长没有特殊要求,只要在1310nm波长区内,是否相同无关紧要。
(2)时间压缩复用(TCM)
TCM方式是解决双向传输的有效手段之一。这种方法只利用一根光纤,但不断交替改变传输方向,使两个方向的信号得以轮流地在同一根光纤上传输,就像打乒乓球一样,因而又称“乒乓法”。实现TCM传输有两种方法,第一种方法是利用一只激光器既作光源又作检测器,十分简单,只要有一收发控制开关准确地控制其收发时间,使之不发生冲突即可。然而这种方法激光器兼作检测器的灵敏度较差,速率较高时,光通道可用光预算很小。第二种方法是利用两套独立收发设备,两端各设一个光耦合器用于分离上行和下行信号,两个方向的信号发送在时间上分开,分别占用不同的时隙轮流发送,其双向传输原理如图2所示。由于同一时刻只允许一个方向传输信号,因而称为半双工方式,以便与WDM和SCM的全双工方式有所区别。采用TCM方式时,两个方向的信号允许工作在同一波长,但目前规定必须在1310nm波长区。
需要注意在接入网环境,PON主要工作在点到多点方式,因此上下行信号的处理方式不同,下行方向上送给各个ONU的信号是连续排列发送且以广播方式送给各个ONU的,各个ONU收到的是全部信号但只能在属于自己的时隙中取出属于自己的信号。上行方向则不同,各个ONU是以突发方式发送信号的,且只能在属于自己的时隙内发送信号,于是各个ONU来的信号呈一个个非连续的突发块且幅度也不尽相同,如图2所示。
表2 OAN容量和ONU类别规定 参数 类型1(例如SDM和WDM) 类型2(例如TCM) ODN接口 至少4个ODN口;总容量800B;每个ODN接口至少200B 至少4个ODN接口;总容量800B;每个ODN接口至少100B 最大分路比 最大逻辑距离20km以下时:16;
最大逻辑距离10km以下时:32 最大逻辑距离20km以下时:8;
最大逻辑距离10km以下时:16 ONU类别 类别1:至少2B;
类别2:至少32B;
类别3:至少64B 类别1:至少2B;
类别2:至少32B;
类别3:至少64B 采用TCM方式可以用一根光纤完成双向传输任务,节约了光纤、分路器和活动连接器,而且网管系统判断故障比较容易,因而获得了广泛的应用。这种系统的缺点是两端的耦合器各有3dB功率的损失,而且OLT和ONU的电路比较复杂。
(3)波分复用(WDM)
当光源发送功率不超过一定门限时,光纤工作于线性传输状态。此时,不同波长的信号只要有一定间隔就可以同一根光纤上独立地进行传输而不会发生相互干扰,这就是波分复用的基本原理。对于双向传输而言,只需将两个方向的信号分别调在不同波长上即可实现单纤双向传输的目的,称为异波长双工方式,特定双向传输方式的原理参见图3。这种方式未来的升级扩容潜力很大,很容易扩展至几十个波长,但目前WDM器件的成本还嫌过高,因而传输距离不长时不够经济。
(4)副载波复用(SCM)
利用副载波复用(SCM)实现双向传输的原理很简单,只需将两个方向的信号分别安排在不同频段即可实现单纤同波长双向传输的目的,基本原理参见图4,图f1中f2和分别代表不同频率。在实际OAN传输系统中,下行方向往往采用TDM方式基带传输形式,因而频率分量集中在低频端,而上行方向采用副载波多址接入(SCMA)方式,即各个用户的频率调在较高频段,与下行信号的频谱隔开,其原理如图5所示。由于上下行信号分别占用不同频段,因而系统对反射不敏感,也无需TDMA方式所必不可少的复杂的延时调整电路,传输延时较小,电路较简单。当然,模拟频分方式必须带有一切模拟方式所不可避免的缺点,这里就不重复讲述了。 ITU-T对于OAN的容量和ONU的类别以及最大分路比都有明确的规定,如表2所示。其中OAN容量实际就是OLT的容量规格要求。这些要求不仅反映了实际应用要求,而且也反映了当前采用互补金属氧化物半导体(CMOS)技术所能经济地工作的速率。ONU的类别则按照其在用户侧所需要的最大通透容量来规定,即以B通路(64kbit/s承载通路)为基本度量单位,通常不含控制和信令通路,除了携带在承载通路内的情况(例如ISDN PRA)例外。
考虑到OAN的主要服务对象是居民住宅用户小企事业用户单位,因而每一个ONU的容量不是很大并可按应用场合划分为不同类别。容量最小的类别1要求至少2B,这种情况通常发生在单个居民住宅用户的情况,即FTTH应用。当然也可以比2B大,例如4B或更多,由厂家自行选择。类别2和类别3分别要求容量不少于32B和64B。 逻辑传输距离指特定传输系统所能通达的最大距离,与光路的光功率预算无关,主要取决于信号帧的构成及分路比和传输方式,实际系统传输距离只可能短于逻辑传输距离。规范逻辑传输距离的目的主要是便于系统分类。通常,所用系统类型和分路比不同其逻辑传输距离不同,表3给出了两种不同类型系统的逻辑传输距离与分路比的关系。
表3 逻辑传输距离与分路比的关系 逻辑传输距离 类型1 类型2 20km 至少能支持分路比16 至少能支持分路比8 10km 至少能支持分路比32 至少能支持分路比16 ONU提供与ODN之间的光接口,实现OAN用户侧的接口功能,它可以设置在用户所在地(FTTH,FTTO,FTTB)或者设置在露天(FTTC)。ONU提供了必要的手段来传递系统所处理的各种不同业务,其功能块可以用图6来描述。
由图可见,ONU的功能由三部分组成,即核心部分,业务部分和公共部分,又可以分别称为核心壳,业务壳和公共壳。
(1)核心部分功能
ONU核心部分功能包含:
用户和业务复用功能;
传输复用功能;
ODN接口功能。
其中传输复用功能为来自与送给ODN接口功能的出入信号提供必要的功能进行评估和分配,提取和输入与ONU相关的信息。用户和业务复用功能对于来自与送给不同用户的信息进行组装和拆卸并与每种不同的业务接口功能相连。与ODN的接口功能则提供一系列物理光接口功能,终结相应的ODN的一系列光纤其功能包括光/电和电/光转换。
(2)业务部分功能
ONU的业务部分功能主要提供用户端口功能,即提供用户业务接口并将其适配入64kbit/s或n×64kbit/s。上述功能既可以为单个用户提供,又可以为一群用户提供。最后,用户端口功能还能按照物理接口来提供信令转换功能,诸如振铃、信令、A/D和D/A转换等。
(3)公共部分功能
ONU公共部分功能包括供电和OAM功能,其中供电功能为ONU供电(例如交/直流转换或直流/直流变换或直流/直流变换),供电方式可以公用同一供电系统。ONU应在备用电池供电条件下能正常工作。
OAM功能提供必要的手段为ONU的所有功能块处理操作、管理和维护功能,例如不同功能块的环回控制功能等。 OLT提供与ODN之间的光接口,应至少能为ODN提供网络侧的一个网络接口。OLT可以与本地交换机共处世哲一地,也可以安装在远端。OLT提供必要的手段来传递不同的业务给ONU,其功能块如图7所示。
由图可见,OLT功能可以由三部分组成,即核心部分,业务部分和公共部分,同样可分别称作核心壳,业务壳和公共壳。
(1)核心部分功能
OLT的核心部分功能包括:
数字交叉连接功能;
传输复用功能;
ODN接口功能。
传输复用功能为在ODN上发送和接收业务通路提供必要的功能。数字交叉连接功能为OLT的ODN侧的可用带宽与OLT网络侧的可用带宽提供交叉连接能力。ODN接口功能提供一系列物理光接口功能终结相应ODN的一系列光纤,其功能包括光/电和电/光转换。为了实现从OLT直到ODN中光分路器处的灵活点之间不同地理路由间的保护倒换,OAN系统应能为OLT装备可选的备用ODN接口。
(2)业务部分功能
OLT业务部分包括业务端口功能,业务端口至少应能携带ISDN PRA速率并能配置成至少提供一种业务或能同时支持两种或多种不同的业务。任何提供两个或多个2Mbit/s端口的支路单元(TU)都应能以每个端口为基础进行独立配置,对于上述多端TU还应能将每个端口配置给不同的业务,OLT设备中的每一TU位置应能允许容纳任何类型的TU,OLT还应能支持任何不超过最大设计数目且能任意结合不同业务类型的TU。当然,业务部分功能通常还应能提供手段来处理通过OLT的信令信息。
(3)公共部分功能
OLT公共部分功能包括供电与OAM功能,其中供电功能将外部供电电源转换为所需的数值,OAN功能则提供必要的手段来处理所有功能块的操作、管理和维护功能。公共部分功能还提供OAM接口功能。对于本地控制,可以提供测试接口,OLT通过协调功能(MF)经Q3接口还能上层网管操作系统相连。
8 信号传输延时
OAN的信号传输延时定义为下行和上行信号传输延时的平均值。按照这一定义,信号传输平均延时是测量的信号往返传输延时的一半,测量方法可以按照上述定义进行,测量条件通常假设传输距离为10km,用户侧的铜缆引入线长度忽略不计。
ITU-T规定,对于FTTH应用,光接入网的V参考点与TC参考点之间的最大信号传输延时不得超过1.5ms;对于其他应用(FTTC,FTTO,FTTB),则光接入网的V参考点与a参考点之间的最大信号传输延时不得超过1.5ms。此时V参考点与T参考点之间的最大信号传输延时仍需满足ISDN的2ms指标要求。

6. 你说的光纤网络是谁运营的要怎么拉电话是多少啊,多少钱一年啊

光纤网络,电信移动联通都有,
估计贵的话就电信的最贵,
电信10000,移动10086,联通10010,。
一年的话,几千左右吧,1000以上吧。。看你要多少速度而定的。

7. 光纤的为什么要分FC、SC、ST和LC这些接头方式呢,为什么不是统一的谢谢

因为这是根据不同的设备来做的。

1、网络收发器是SC头。

8. 光纤通信中光纤的连接对准非常重要,为什么

光纤通信中光纤的连接对准非常重要

光纤连接器按传输媒介的不同可分为常见的硅基光纤的单模和多模连接器,还有其它如以塑
光纤连接器对接原理
胶等为传输媒介的光纤连接器;按连接头结构形式可分为:FC、SC、ST、LC、D4、DIN、MU、MT等等各种形式。其中,ST连接器通常用于布线设备端,如光纤配线架、光纤模块等;而SC和MT连接器通常用于网络设备端。按光纤端面形状分有FC、PC(包括SPC或UPC)和APC;按光纤芯数划分还有单芯和多芯(如MT-RJ)之分。光纤连接器应用广泛,品种繁多。在实际应用过程中,我们一般按照光纤连接器结构的不同来加以区分。以下是一些现在常见的光纤连接器:

FC型光纤连接器
这种连接器最早是由日本NTT研制。FC是Ferrule Connector的缩写,表明其外部加强方式是采用金属套,紧固方式为螺丝扣。最早,FC类型的连接器,采用的陶瓷插针的对接端面是平面接触方式(FC)。此类连接器结构简单,操作方便,制作容易,但光纤端面对微尘较为敏感,且容易产生菲涅尔反射,提高回波损耗性能较为困难。后来,对该类型连接器做了改进,采用对接端面呈球面的插针(PC),而外部结构没有改变,使得插入损耗和回波损耗性能有了较大幅度的提高。

SC型光纤连接器
这是一种由日本NTT公司开发的光纤连接器。其外壳呈矩形,所采用的插针与耦合套筒的结构尺寸与FC型完全相同。其中插针的端面多采用PC或APC型研磨方式;紧固方式是采用插拔销闩式,不需旋转。此类连接器价格低廉,插拔操作方便,介入损耗波动小,抗压强度较高,安装密度高。
ST和SC接口是光纤连接器的两种类型,对于10Base-F连接来说,连接器通常是ST类型的,对于100Base-FX来说,连接器大部分情况下为SC类型的。ST连接器的芯外露,SC连接器的芯在接头里面。
双锥型连接器(Biconic Connector)
这类光纤连接器中最有代表性的产品由美国贝尔实验室开发研制,它由两个经精密模压成形的端头呈截头圆锥形的圆筒插头和一个内部装有双锥形塑料套筒的耦合组件组成。DIN47256型光纤连接器这是一种由德国开发的连接器。这种连接器采用的插针和耦合套筒的结构尺寸与FC型相同,端面处理采用PC研磨方式。与FC型连接器相比,其结构要复杂一些,内部金属结构中有控制压力的弹簧,可以避免因插接压力过大而损伤端面。另外,这种连接器的机械精度较高,因而介入损耗值较小。

MT-RJ型连接器
MT-RJ起步于NTT开发的MT连接器,带有与RJ-45型LAN电连接器相同的闩锁机构,通过安装于小型套管两侧的导向销对准光纤,为便于与光收发信机相连,连接器端面光纤为双芯(间隔0.75mm)排列设计,是主要用于数据传输的下一代高密度光纤连接器。

LC型连接器
LC型连接器是著名Bell(贝尔)研究所研究开发出来的,采用操作方便的模块化插孔(RJ)闩锁机理制成。其所采用的插针和套筒的尺寸是普通SC、FC等所用尺寸的一半,为1.25mm。这样可以提高光纤配线架中光纤连接器的密度。当前,在单模SFF方面,LC类型的连接器实际已经占据了主导地位,在多模方面的应用也增长迅速。

MU型连接器
MU(Miniature unit Coupling)连接器是以目前使用最多的SC型连接器为基础,由NTT研制开发出来的世界上最小的单芯光纤连接器,。该连接器采用1.25mm直径的套管和自保持机构,其优势在于能实现高密度安装。利用MU的l.25mm直径的套管,NTT已经开发了MU连接器系列。它们有用于光缆连接的插座型连接器(MU-A系列);具有自保持机构的底板连接器(MU-B系列)以及用于连接LD/PD模块与插头的简化插座(MU-SR系列)等。随着光纤网络向更大带宽更大容量方向的迅速发展和DWDM技术的广泛应用,对MU型连接器的需求也将迅速增长。

MC连接器
2012年国内通讯公司自主研发了一款比LC连接器体积更小,密度更高的MC连接器。日海MC光纤活动连接器是一种高密度单芯光纤活动连接器,适用于各种高密度场合,如大容量中心机房和高密度数据中心。 MC光纤活动连接器密度高,在相同的空间内最高可达到LC连接器的两倍,堪称世界目前体积最小、密度最高的一款连接器。

热点内容
网卡了的原因 发布:2021-03-16 21:18:20 浏览:602
联通客服工作怎么样 发布:2021-03-16 21:17:49 浏览:218
路由器画图 发布:2021-03-16 21:17:21 浏览:403
大网卡收费 发布:2021-03-16 21:16:50 浏览:113
路由器免费送 发布:2021-03-16 21:16:19 浏览:985
孝昌营业厅 发布:2021-03-16 21:15:54 浏览:861
网速增速代码 发布:2021-03-16 21:15:29 浏览:194
怎么黑光纤 发布:2021-03-16 21:14:54 浏览:901
端口增大 发布:2021-03-16 21:14:20 浏览:709
开机没信号是什么原因 发布:2021-03-16 21:13:45 浏览:645