当前位置:首页 » 有线网络 » 光纤历史

光纤历史

发布时间: 2021-02-12 21:26:36

光纤的起源与发展

光纤是一种将讯息从一端传送到另一端的媒介.是一条玻璃或塑胶纤维,作为让讯息通过的传输媒介。

通常「光纤」与「光缆」两个名词会被混淆.多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为「光缆」.光纤外层的保护结构可防止周遭环境对光纤的伤害,如水,火,电击等.光缆分为:光纤,缓冲层及披覆.光纤和同轴电缆相似,只是没有网状屏蔽层。中心是光传播的玻璃芯。在多模光纤中,芯的直径是15μm~50μm, 大致与人的头发的粗细相当。而单模光纤芯的直径为8μm~10μm。芯外面包围着一层折射率比芯低的玻璃封套, 以使光纤保持在芯内。再外面的是一层薄的塑料外套,用来保护封套。光纤通常被扎成束,外面有外壳保护。 纤芯通常是由石英玻璃制成的横截面积很小的双层同心圆柱体,它质地脆,易断裂,因此需要外加一保护层。

光纤的特性

由於光纤是一种传输媒介,它可以像一般铜缆线,传送电话通话或电脑数据等资料,所不同的是,光纤传送的是光讯号而非电讯号.因此,光纤具有很多独特的优点.

如:宽频宽.低损耗.屏蔽电磁辐射.重量轻.安全性.隐秘性.

光纤系统的运作

你可能知道任何通讯传输的过程包括:编码→传输→解码,当然,光纤系统的传输过程也大致相同.电子讯号输入后,透过传输器将讯号数位编码,成为光讯号,光线透过光纤为媒介,传送到另一端的接受器,接受器再将讯号解码,还原成原先的电子讯号输出.

光纤光缆的运用

光缆的应用区分,可分为3种:专业用途,一般屋外,一般屋内.在专业用途上包括海底光缆,高压电塔上之空架光缆,核能电厂之抗辐射光缆,化工业之抗腐蚀光缆等.而一般屋内及一般屋外的分类差异,依各型光缆依制造设计时之特质,其所适用之范围各有不同.

光缆从屋外至屋内的过程中可分为空架,地下道,直接埋设,管道间铺设,室内用。

光纤的历史

1880-AlexandraGrahamBell发明光束通话传输

1960-电射及光纤之发明

1977-首次实际安装电话光纤网路

1978-FORT在法国首次安装其生产之光纤电

1990-区域网路及其他短距离传输应用之光纤

2000-到屋边光纤=>到桌边光纤

光纤的分类

光纤主要分以下两大类:

1)传输点模数类

传输点模数类分单模光纤(Single Mode Fiber)和多模光纤(Multi Mode Fiber)。单模光纤的纤芯直径很小, 在给定的工作波长上只能以单一模式传输,传输频带宽,传输容量大。多模光纤是在给定的工作波长上,能以多个模式同时传输的光纤。 与单模光纤相比,多模光纤的传输性能较差。

2)折射率分布类

折射率分布类光纤可分为跳变式光纤和渐变式光纤。跳变式光纤纤芯的折射率和保护层的折射率都是一个常数。 在纤芯和保护层的交界面,折射率呈阶梯型变化。渐变式光纤纤芯的折射率随着半径的增加按一定规律减小, 在纤芯与保护层交界处减小为保护层的折射率。纤芯的折射率的变化近似于抛物线。

Ⅱ 光纤通信的起源

光纤通信技术(optical fiber communications)从光通信中脱颖而出,已成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。光纤通信作为一门新兴技术,其近年来发展速度之快、应用面之广是通信史上罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。
光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。
光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤.采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信.中国光纤通信已进入实用阶段.
光纤通信的诞生和发展是电信史上的一次重要革命与卫星通信、移动通信并列为20世纪90年代的技术。进入21世纪后,由于因特网业务的迅速发展和音频、视频、数据、多媒体应用的增长,对大容量(超高速和超长距离)光波传输系统和网络有了更为迫切的需求。
光纤通信就是利用光波作为载波来传送信息,而以光纤作为传输介质实现信息传输,达到通信目的的一种最新通信技术。

Ⅲ 光纤激光器的发展史

早期对激光器的研制主要集中在研究短脉冲的输出和可调谐波长范围的扩展方面。今天,密集波分复用(DWDM)和光时分复用技术的飞速发展及日益进步加速和刺激着多波长光纤激光器技术、超连续光纤激光器等的进步。同时,多波长光纤激光器和超连续光纤激光器的出现,则为低成本地实现Tb/s的DWDM或OTDM传输提供理想的解决方案。就其实现的技术途径来看,采用EDFA放大的自发辐射、飞秒脉冲技术、超发光三极管等技术均见报道。
国内外对于光纤激光器的研究方向和热点主要集中在高功率光纤激光器、高功率光子晶体光纤激光器、窄线宽可调谐光纤激光器、多波长光纤激光器、非线性效应光纤激光器和超短脉冲光纤激光器等几个方面。
1962年世界上第一个GaAs半导体激光器问世以来,已有五十余年的历史,半导体激光器已广泛地应用于激光通信、光盘存储、激光检测等领域。
随着半导体激光器连续输出功率的日益提高,其应用范围也不断扩大,其中大功率半导体激光器泵浦的固体激光器(DPSSL)是它最大的应用领域之一。这一技术综合了半导体激光器与固体激光器的优点,不仅将半导体激光器的波长转换为固体激光器的波长,而且伴随光束质量的改善和光谱线宽的压缩,以及实现脉冲输出等。半导体激光器体积小、重量轻,直接电子注入具有很高的量子效率,可以通过调整组份和控制温度得到不同的波长与固体激光材料的吸收波长相匹配,但它本身的光束质量较差,且两个方向不对称,横模特性也不尽理想。而固体激光器的输出光束质量较高,有很高的时间和空间相干性,光谱线宽与光束发散角比半导体激光小几个量级。对于DPSSL,是吸收波长短的高能量光子,转化为波长较长的低能量光子,这样总有一部分能量以无辐射跃迁的方式转换为热。这部分热能量将如何从块状激光介质中散发、排除成为半导体泵浦固体激光器的关键技术。为此,人们开始探索增大散热面积的方法。
方法之一就是将激光介质做成细长的光纤形状。
所谓光纤激光器就是用光纤作激光介质的激光器,1964年世界上第一代玻璃激光器就是光纤激光器。由于光纤的纤芯很细,一般的泵浦源(例如气体放电灯)很难聚焦到芯部。所以在以后的二十余年中光纤激光器没有得到很好的发展。随着半导体激光器泵浦技术的发展,以及光纤通信蓬勃发展的需要,1987年英国南安普顿大学及美国贝尔实验室实验证明了掺铒光纤放大器(EDFA)的可行性。它采用半导体激光光泵掺铒单模光纤对光信号实现放大,这种EDFA已经成为光纤通信中不可缺少的重要器件。由于要将半导体激光泵浦入单模光纤的纤芯(一般直径小于10um),要求半导体激光也必须为单模的,这使得单模EDFA难以实现高功率,报道的最高功率也就几百毫瓦。
为了提高功率,1988年左右有人提出光泵由包层进入。初期的设计是圆形的内包层,但由于圆形内包层完美的对称性,使得泵浦吸收效率不高,直到九十年代初矩形内包层的出现,使激光转换效率提高到50%,输出功率达到5瓦。1999年用四个45瓦的半导体激光器从两端泵浦,获得了110瓦的单模连续激光输出。近两年,随着高功率半导体激光器泵浦技术和双包层光纤制作工艺的发展,光纤激光器的输出功率逐步提高,采用单根光纤,已经实现了1000瓦的激光输出。
随着光纤通信系统的广泛应用和发展,超快速光电子学、非线性光学、光传感等各种领域应用的研究已得到日益重视。其中,以光纤 作基质的光纤激光器,在降低阈值、振荡波长范围、波长可调谐性能等方面,已明显取得进步,是光通信领域的新兴技术,它可以用于现有的通信系统,使之支 持更高的传输速度,是未来高码率密集波分复用系统和未来相干光通信的基础。光纤激光器技术是研究的热点技术之一。
光纤激光器由于其具有绝对理想的光束质量、超高的转换效率、完全免维护、高稳定性以及体积小等优点,对传统的激光行业产生巨大而积极的影响。 最新市场调查显示:光纤激光器供应商将争夺固体激光器及其他激光器在若干关键应用领域的市场份额,而这些市场份额在未来几年将稳步看涨。到2010年,光纤激光器将至少占领工业激光器28亿美元市场份额的四分之一。光纤激光器的销售量将以年增幅愈35%的速度攀升,从2005年的1.4亿美元增至2010年的6.8亿美元。而同期,工业激光器市场每年增幅仅9%,2010年达到28亿美元。

Ⅳ 光纤光学的起源

现在的布线和网络使用了大量的光纤,我一直在想光纤是怎么诞生的呢?最近我一直在查这方面的资料,今天终于看到了相关的资料,现在拿来和大家分享,让我们永远记住他们的名字:高锟(英藉华人)、美国贝尔研究所、美国康宁玻璃公司的马瑞尔、卡普隆、凯克。下面是相关的资料:
人类从未放弃过对理想光传输介质的寻找,经过不懈的努力,人们发现了透明度很高的石英玻璃丝可以传光。这种玻璃丝叫做光学纤维,简称“光纤”。 人们用它制造了在医疗上用的内窥镜,例如做成胃镜,可以观察到距离一米左右的体内情况。但是它的衰减损耗很大,只能传送很短的距离。光的损耗程度是用每千米的分贝为单位来衡量的。直到20世纪60年代,最好的玻璃纤维的衰减损耗仍在每公里1000分贝以上。每公里1000分贝的损耗是什么概念呢?每公里10分贝损耗就是输入的信号传送1公里后只剩下了十分之一,20分贝就表示只剩下百分之一,30分贝是指只剩千分之一……1000分贝的含意就是只剩下亿百分之一,是无论如何也不可能用于通信的。因此,当时有很多科学家和发明家认为用玻璃纤维通信希望渺茫,失去了信心,放弃了光纤通信的研究。
激光器和光纤的发明,使人们看到了光通信的曙光。而要实现光纤通信,还需要在激光器和光纤的性能上有重大的突破。但是在这两方面的突破遇到了许多困难,尤其是光纤的损耗要达到可用于通信的要求,从每千米损耗1000分贝降低到20分贝似乎不太可能,以致很多科学家对实现光纤通信失去了信心。就在这种情况下,出生于上海的英藉华人高锟(K.C.Kao)博士(光纤之父),通过在英国标准电信实验室所作的大量研究的基础上,对光波通信作出了一个大胆的设想。他认为,既然电可以沿着金属导线传输,光也应该可以沿着导光的玻璃纤维传输。1966年7月,高锟就光纤传输的前景发表了具有重大历史意义的论文,论文分析了玻璃纤维损耗大的主要原因,大胆地预言,只要能设法降低玻璃纤维的杂质,就有可能使光纤的损耗从每公里1000分贝降低到20分贝/公里,从而有可能用于通信。这篇论文使许多国家的科学家受到鼓舞,加强了为实现低损耗光纤而努力的信心。
世界上第一根低损耗的石英光纤――1970年,美国康宁玻璃公司的三名科研人员马瑞尔、卡普隆、凯克成功地制成了传输损耗每千米只有20分贝的光纤。这是什么概念呢?用它和玻璃的透明程度比较,光透过玻璃功率损耗一半(相当于3分贝)的长度分别是:普通玻璃为几厘米、高级光学玻璃最多也只有几米,而通过每千米损耗为20分贝的光纤的长度可达150米。这就是说,光纤的透明程度已经比玻璃高出了几百倍!在当时,制成损耗如此之低的光纤可以说是惊人之举,这标志着光纤用于通信有了现实的可能性。
1970年激光器和低损耗光纤这两项关键技术的重大突破,使光纤通信开始从理想变成可能,这立即引起了各国电信科技人员的重视,他们竞相进行研究和实验。1974年美国贝尔研究所发明了低损耗光纤制作法――CVD法(汽相沉积法),使光纤损耗降低到1分贝/公里;1977年,贝尔研究所和日本电报电话公司几乎同时研制成功寿命达100万小时(实用中10年左右)的半导体激光器,从而有了真正实用的激光器。1977年,世界上第一条光纤通信系统在美国芝加哥市投入商用,速率为45Mb/s。
进入实用阶段以后,光纤通信的应用发展极为迅速,应用的光纤通信系统已经多次更新换代。70年代的光纤通信系统主要是用多模光纤,应用光纤的短波长(850纳米)波段,(1纳米=1000兆分之一米,即米)。80年代以后逐渐改用长波长(1310纳米),光纤逐渐采用单模光纤,到90年代初,通信容量扩大了50倍,达到2.5Gb/s。进入90年代以后,传输波长又从1310纳米转向更长的1550纳米波长,并且开始使用光纤放大器、波分复用(WDM)技术等新技术。通信容量和中继距离继续成倍增长。广泛地应用于市内电话中继和长途通信干线,成为通信线路的骨干。

Ⅳ 光缆的历史沿革

1976年,美国贝尔研究所在亚特兰大建成第一条光纤通信实验系统,采用了西方电气公司制造的含有
144根光纤的光缆。1980年,由多模光纤制成的商用光缆开始在市内局间中继线和少数长途线路上采用。单模光纤制成的商用光缆于1983年开始在长途线路上采用。1988年,连接美国与英法之间的第一条横跨大西洋海底光缆敷设成功,不久又建成了第一条横跨太平洋的海底光缆。中国于1978年自行研制出通信光缆,采用的是多模光纤,缆心结构为层绞式。曾先后在上海、北京、武汉等地开展了现场试验。后不久便在市内电话网内作为局间中继线试用,1984年以后,逐渐用于长途线路,并开始采用单模光纤。 通信光缆比铜线电缆具有更大的传输容量,中继段距离长、体积小,重量轻,无电磁干扰,自1976年以后已发展成长途干线、市内中继、近海及跨洋海底通信、以及局域网、专用网等的有线传输线路骨干,并开始向市内用户环路配线网的领域发展,为光纤到户、宽带综合业务数字网提供传输线路。

Ⅵ 光纤是谁发明的

1960年,美国人梅曼发明了红宝石激光器,使人类获得了性质与电磁波相同、且频率和相位都稳定的光——激光,但当时这种激光器还不能在室温条件下连续工作。

由于激光频带宽、纯度高、不易扩散,具有很好的方向性,因而很快便在通信领域找到了用武之地。

在光纤的传输介质方面,人们发现了透明度很高的石英玻璃丝可以传播光。这种玻璃丝叫作光学纤维,简称光纤。光纤一般由两层组成,里面一层称为内芯,直径一般为几十微米或几微米;外面一层称为包层。为了使光纤在施工的过程中不易被拉断,通常把千百根光纤组合在一起进行增强处理,制成像电缆一样的光缆,这样既提高了光纤的强度,又使光纤系统的通信容量大大增加。光纤的突出优点,是它可以在同一条通路上进行双向传输,利用这一特性,用户可以通过交互信息系统与对方对话,这就是我们所说的光纤通信。

光纤通信是运用光反射原理,把光的全反射限制在光纤内部,用光的信号取代传统通信方式中的电信号。但初期的光纤,光在其中传输时损耗很大。因此,要想用它来通信是不可能的。

1966年7月,英国标准电信研究所的英籍华人高锟博士和霍克哈姆就光纤传输的前景发表了具有重大历史意义的论文,论文分析了玻璃纤维损耗大的主要原因,大胆地预言,只要能设法降低玻璃纤维中的杂质,就有可能使光纤损耗从每千米1000分贝降低到每千米20分贝,从而有可能用于通信。这篇论文鼓舞了许多科学家为实现低损耗的光纤而努力。

1970年,美国康宁玻璃公司的卡普隆博士等三人,经过多次的试验,终于研制出传输损耗仅为每千米20分贝的光纤。这样低损耗的光纤,在当时是惊人的成就,使光纤通信有了实现的可能。

1970年,美国的贝尔研究所研制出能在室温下连续工作的半导体激光器,这种激光器只有米粒大小。尽管最初的激光器的寿命很短,但这种激光器已被认为是可以作为光纤通信的光源。由于光纤和激光器的重大突破,使光纤通信有了实现的可能,因此,1970年被认为是值得纪念的光纤传输元年。

1970年,突破了光纤和激光器两项技术难题,光纤通信从理想变成可能,各国电信科技人员,竞相进行研究和试验。光纤通信开始进入实用阶段,而且此后的发展极为迅速,其应用系统也已经多次更新换代。20世纪70年代的光纤通信系统主要应用光纤的短波波段进行传输;80年代以后逐渐改用长波波段;到90年代初,光纤的通信容量扩大了50倍。到了90年代后期,传输波波长更长,并且开始使用光纤放大器等新技术以增强信号、扩大传输容量。这时,光纤广泛地应用于市内电话以及长途通信干线中,成为通信线路的骨干。甚至美、日、英、法等8国已宣布,今后铺设长途通信干线不再使用电缆而改用光缆。

Ⅶ 什么是光纤光纤的起源是什么

光纤是一种将讯息从一端传送到另一端的媒介.是一条玻璃或塑胶纤维,作为让讯息通过的传输媒介。 通常「光纤」与「光缆」两个名词会被混淆.多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为「光缆」.光纤外层的保护结构可防止周遭环境对光纤的伤害,如水,火,电击等.光缆分为:光纤,缓冲层及披覆.光纤和同轴电缆相似,只是没有网状屏蔽层。中心是光传播的玻璃芯。在多模光纤中,芯的直径是15μm~50μm, 大致与人的头发的粗细相当。而单模光纤芯的直径为8μm~10μm。芯外面包围着一层折射率比芯低的玻璃封套, 以使光纤保持在芯内。再外面的是一层薄的塑料外套,用来保护封套。光纤通常被扎成束,外面有外壳保护。 纤芯通常是由石英玻璃制成的横截面积很小的双层同心圆柱体,它质地脆,易断裂,因此需要外加一保护层。 光纤的特性 由於光纤是一种传输媒介,它可以像一般铜缆线,传送电话通话或电脑数据等资料,所不同的是,光纤传送的是光讯号而非电讯号.因此,光纤具有很多独特的优点. 如:宽频宽.低损耗.屏蔽电磁辐射.重量轻.安全性.隐秘性. 光纤系统的运作 你可能知道任何通讯传输的过程包括:编码→传输→解码,当然,光纤系统的传输过程也大致相同.电子讯号输入后,透过传输器将讯号数位编码,成为光讯号,光线透过光纤为媒介,传送到另一端的接受器,接受器再将讯号解码,还原成原先的电子讯号输出. 光纤光缆的运用 光缆的应用区分,可分为3种:专业用途,一般屋外,一般屋内.在专业用途上包括海底光缆,高压电塔上之空架光缆,核能电厂之抗辐射光缆,化工业之抗腐蚀光缆等.而一般屋内及一般屋外的分类差异,依各型光缆依制造设计时之特质,其所适用之范围各有不同. 光缆从屋外至屋内的过程中可分为空架,地下道,直接埋设,管道间铺设,室内用。 光纤的历史 1880-AlexandraGrahamBell发明光束通话传输 1960-电射及光纤之发明 1977-首次实际安装电话光纤网路 1978-FORT在法国首次安装其生产之光纤电 1990-区域网路及其他短距离传输应用之光纤 2000-到屋边光纤=>到桌边光纤 2005 FTTH(Fiber To The Home)光纤直接到家庭 光纤的分类 光纤主要分以下两大类: 1)传输点模数类 传输点模数类分单模光纤(Single Mode Fiber)和多模光纤(Multi Mode Fiber)。单模光纤的纤芯直径很小, 在给定的工作波长上只能以单一模式传输,传输频带宽,传输容量大。多模光纤是在给定的工作波长上,能以多个模式同时传输的光纤。 与单模光纤相比,多模光纤的传输性能较差。 2)折射率分布类 折射率分布类光纤可分为跳变式光纤和渐变式光纤。跳变式光纤纤芯的折射率和保护层的折射率都是一个常数。 在纤芯和保护层的交界面,折射率呈阶梯型变化。渐变式光纤纤芯的折射率随着半径的增加按一定规律减小, 在纤芯与保护层交界处减小为保护层的折射率。纤芯的折射率的变化近似于抛物线。

Ⅷ 光纤的发展史

1880-AlexandraGrahamBell发明光束通话传输光纤。
1960-电射及光纤之发明。
1960-玻璃纤维的传输损耗大于1000dB/km,其他材料包括光圈波导、气体透镜波导、空心金属波导管等。
1966-七月,英籍、华裔学者高锟博士(K.C.Kao)在PIEE 杂志上发表论文《光频率的介质纤维表面波导》,从理论上分析证明了用光纤作为传输媒体以实现光通信的可能性,并预言了制造通信用的超低耗光纤的可能性。
1970-美国康宁公司三名科研人员马瑞尔、卡普隆、凯克用改进型化学相沉积法(MCVD 法)成功研制成传输损耗只有20dB/km的低损耗石英光纤。
1970-美国贝尔实验室研制出世界上第一只在室温下连续波工作的砷化镓铝半导体激光器。
1972-传输损耗降低至4dB/km。
1973-我国邮电部武汉邮电科学研究院开始研究光纤通信。
1974-美国贝尔研究所发明了低损耗光纤制作法――CVD法(汽相沉积法),使光纤传输损耗降低到1.1dB/km。
1976-美国在亚特兰大的贝尔实验室地下管道开通了世界上第一条光纤通信系统的试验线路。采用一条拥有144个光纤的光缆以44.736Mbps的速率传输信号,中继距离为10 km。采用的是多模光纤,光源用的是发光管LED,波长是0.85微米的红外光。
1976-传输损耗降低至0.5dB/km。
1977-贝尔研究所和日本电报电话公司几乎同时研制成功寿命达100万小时(实用中10年左右)的半导体激光器。
1977-世界上第一条光纤通信系统在美国芝加哥市投入商用,速率为45Mb/s。
1977-首次实际安装电话光纤网路。
1978-FORT在法国首次安装其生产之光纤电。
1979-赵梓森拉制出我国自主研发的第一根实用光纤,被誉为“中国光纤之父”。
1979-传输损耗降低至0.2dB/km。
1980-多模光纤通信系统商用化(140Mb/s),并着手单模光纤通信系统的现场试验工作。
1982-我国邮电部重点科研工程“.八二工程”在武汉开通。
1990-单模光纤通信系统进入商用化阶段(565Mb/s),并着手进行零色散移位光纤和波分复用及相干通信的现场试验,而且陆续制定数字同步体系(SDH)的技术标准。
1990-传输损耗降低至0.14dB/km,已经接近石英光纤的理论衰耗极限值0.1dB/km。
1990-区域网络及其他短距离传输应用之光纤。
1992-贝尔实验室与日本合作伙伴成功地试验了可以无错误传输9000公里的光放大器,其最初速率为5Gbps,随后增加到10Gbps。
1993-SDH产品开始商用化(622Mb/s 以下)。
1995-2.5Gb/s 的SDH产品进入商用化阶段。
1996-10Gb/s 的SDH产品进入商用化阶段。
1997-采用波分复用技术(WDM)的20Gb/s 和40Gb/s 的SDH产品试验取得重大突破。
1999-中国生产的8×2.5Gb/sWDM系统首次在青岛至大连开通,沈阳至大连的32×2.5Gb/sWDM光纤通信系统开通。
2000-到屋边光纤=>到桌边光纤。
2005-3.2Tbps超大容量的光纤通信系统在上海至杭州开通。
2005 FTTH(Fiber To The Home)光纤直接到家庭。
2012年,中国的光纤产能已达到1亿2千万芯公里,预计到2013年将达到1亿8千万芯公里。

Ⅸ 光纤网络的发展史

光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。
1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。
1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特兰大到华盛顿间建立了世界第一条实用化的光纤通信线路,速率为45Mb/s,采用的是多模光纤,光源用的是发光管LED,波长是0.85微米的红外光。在上世纪70年代末,大容量的单模光纤和长寿命的半导体激光器研制成功。光纤通信系统开始显示出长距离、大容量无比的优越性。 1973年,世界光纤通信尚未实用。邮电部武汉邮电科学研究院(当时是武汉邮电学院)就开始研究光纤通信。由于武汉邮电科学研究院采用了石英光纤、半导体激光器和编码制式通信机正确的技术路线,使我国在发展光纤通信技术上少走了不少弯路,从而使我国光纤通信在高新技术中与发达国家有较小的差距。
我国研究开发光纤通信正处于十年动乱时期,处于封闭状态。国外技术基本无法借鉴,纯属自己摸索,一切都要自己搞,包括光纤、光电子器件和光纤通信系统。就研制光纤来说,原料提纯、熔炼车床、拉丝机,还包括光纤的测试仪表和接续工具也全都要自己开发,困难极大。武汉邮电科学研究院,考虑到保证光纤通信最终能为经济建设所用,开展了全面研究,除研制光纤外,还开展光电子器件和光纤通信系统的研制,使我国至今具有了完整的光纤通信产业。
1978年改革开放后,光纤通信的研发工作大大加快。上海、北京、武汉和桂林都研制出光纤通信试验系统。1982年邮电部重点科研工程“八二工程”在武汉开通。该工程被称为实用化工程,要求一切是商用产品而不是试验品,要符合国际CCITT标准,要由设计院设计、工人施工,而不是科技人员施工。从此中国的光纤通信进入实用阶段。在20世纪80年代中期,数字光纤通信的速率已达到144Mb/s,可传送1980路电话,超过同轴电缆载波。于是,光纤通信作为主流被大量采用,在传输干线上全面取代电缆。经过国家“六五”、“七五”、“八五”和“九五”计划,中国已建成“八纵八横”干线网,连通全国各省区市。中国已敷设光缆总长约250万公里。光纤通信已成为中国通信的主要手段。在国家科技部、计委、经委的安排下,1999年中国生产的8×2.5Gb/sWDM系统首次在青岛至大连开通,随之沈阳至大连的32×2.5Gb/sWDM光纤通信系统开通。2005年3.2Tbps超大容量的光纤通信系统在上海至杭州开通,是至今世界容量最大的实用线路。
中国已建立了一定规模的光纤通信产业。中国生产的光纤光缆、半导体光电子器件和光纤通信系统能供国内建设,并有少量出口。
有人认为,我国光纤通信主要干线已经建成,光纤通信容量达到Tbps,几乎用不完,再则2000年的IT泡沫,使光纤的价格低到每公里100元,几乎无利可图。因此不要发展光纤通信技术了。
实际上,特别是中国,省内农村有许多空白需要建设;3G移动通信网的建设也需要光纤网来支持;随着宽带业务的发展、网络需要扩容等,光纤通信仍有巨大的市场。每年光纤通信设备和光缆的销售量是上升的。

热点内容
网卡了的原因 发布:2021-03-16 21:18:20 浏览:602
联通客服工作怎么样 发布:2021-03-16 21:17:49 浏览:218
路由器画图 发布:2021-03-16 21:17:21 浏览:403
大网卡收费 发布:2021-03-16 21:16:50 浏览:113
路由器免费送 发布:2021-03-16 21:16:19 浏览:985
孝昌营业厅 发布:2021-03-16 21:15:54 浏览:861
网速增速代码 发布:2021-03-16 21:15:29 浏览:194
怎么黑光纤 发布:2021-03-16 21:14:54 浏览:901
端口增大 发布:2021-03-16 21:14:20 浏览:709
开机没信号是什么原因 发布:2021-03-16 21:13:45 浏览:645