光纤分立盒
A. 光纤传感和光纤通信使用光纤的目的有什么不同
光纤是直径为0.125mm、长度从几米至几十公里、由二氧化硅玻璃材料制作的光传输介质。光纤的损耗很小,在1.55um波段损耗可低至0.2dB每千米,约99%的入射光可以通过1千米长的光纤。
光纤具有宽带特性,可将各种传感器复用于一根光纤,进行检测和传输。光纤传感器具有体积小、重量轻、牢固耐用、抗电磁干扰、传感头无须供电、使用安全(绝缘性好、无燃爆危险)、可远距离遥测、多点复用、分布式测量等优点,光纤材料用做传感器具有独特的优势。
光纤传感的原理是通过检测光纤中传输的光波强度、相位、频率/波长、偏振的变化感知外界物理量的变化。光纤传感器可制成分立的、准连续和分布式的传感测量系统。可以测量温度、位移、加速度、压力、应变、电场、磁场、转动、气体浓度、流速、锈蚀等各种变量。--【OFweek光通讯网】
B. 光纤分路器和光纤耦合器有何不同
光纤耦合器按用途来分类可以分为:定向耦合器(光分波器,光合波器回,光分支器)、星型耦合答器(透射型耦合器,反射型耦合器)、T型耦合器。
按结构来分:分立元件型耦合器、熔融拉锥型耦合器、拼接型耦合器、微光元件耦合器、平面波导耦合器。
按光纤类型分:单模光纤耦合器、多模光纤耦合器、保偏光纤耦合器。
而光纤耦合器包含光纤分路器与光纤合路器,由此可见分纤分路器是光纤耦合器的一种。
C. 几种光纤传感器的介绍及特点
目前国内市场上,应用最为广泛的光纤传感技术当属布拉格光纤光栅和基于光时域反射的分布式传感器,这种技术基本上可以满足中低端市场的需求。而现在光谱线宽窄至2kHz的单频光纤激光器及其引申出来的最新一代光传感技术,这与传统的光纤传感有很大的区别,它可以进行超远距离的传输,精度和敏感度能达到更高的要求,这在高端市场上需求很大,目前该项技术在国内尚处于立项和预研阶段。国内市场上光纤传感器应用主要在以下四种:光纤陀螺、光纤光栅传感器、光纤电流传感器和光纤水听器。下面对这四种产品分别介绍一下。 一、光纤光栅传感器。 目前国内外传感器领域的研究热点之一光纤布拉格光栅传感器。传统光纤传感器基本上可分为两种类型:光强型和干涉型。光强型传感器的缺点在于光源不稳定,而且光纤损耗和探测器容易老化;干涉型传感器由于要求两路干涉光的光强同等,所以 需要固定参考点而导致应用不方便。目前开发的以光纤布拉格光栅为主的光纤光栅传感器可以避免出现上面两种情况,其传感信号为波长调制、复用能力强。在建筑健康检测、冲击检测、形状控制和振动阻尼检测等应用中,光纤光栅传感器是最理想的灵敏元件。光纤光栅传感器在地球动力学、航天器、电力工业和化学传感中有广泛的应用。 二、光纤陀螺。 光纤陀螺按原理可分为干涉型、谐振型和布里渊型,这是三代光纤陀螺的代表。第一代干涉型光纤陀螺,目前该项技术已经成熟,适合进行批量生产和商品化;第二代谐振型光纤陀螺,暂时还处于实验室研究向实用化推进的发展阶段;第三代布里渊型,它还处于理论研究阶段。光纤陀螺结构根据所采用的光学元件有三种实现方法:小型分立元件系统、全光纤系统和集成光学元件系统。目前分立光学元件技术已经基本退出,全光纤系统用在开环低精度、低成本的光纤陀螺中,集成光学器件陀螺由于其工艺简单、总体重复性好、成本低,所以在高精度光纤陀螺很受欢迎,是其主要实现方法。 三、光纤水听器。 光纤水听器主要用来测量水下声信号,它通过高灵敏度的光纤相干检测,将水声信号转换为光信号,并通过光纤传至信号处理系统进行识别。与传统水听器相比,光纤水听器具有灵敏度高、响应带宽宽、不受电磁干扰等特点,广泛用于军事和石油勘探、环境检测等领域,具有很大的发展潜力。光纤水听器按原理可分为干涉型、强度型、光栅型等。干涉型光纤水听器关键技术已经逐步发展成熟,在部分领域形成产品;光纤光栅水听器则是当前研究的热点,研究的关键技术涉及光源、光纤器件、探头技术、抗偏振衰落技术、抗相位衰落技术、信号处理技术、多路复用技术以及工程技术等。 四、光纤电流传感器。电力工业的迅猛发展带动电力传输系统容量不断增加,运行电压等级也越来越高,电流也越来越大,这样测量起来就非常困难,这就显现出光纤电流传感器的优点了。在电力系统中,传统的用来测量电流的传感器是以电磁感应为基础,这就存在以下缺点:它容易爆炸以至引起灾难性事故;大故障电流会造成铁芯磁饱和;铁芯发生共振效应;频率响应慢;测量精度低;信号易受干扰;体积重量大、价格昂贵等等,已经很难满足新一代数字电力网的发展需要。这个时候光纤电流传感器应运而生。 光纤传感器技术是建立在光纤、光通信和光电子技术的基础上发展起来的,电磁干扰和腐蚀作用对它的影响很小,还能适应各种恶劣的气象环境,不要额外的电源进行供电,就可以长距离的进行传输,已成为传感器行业的研究热点。
D. 光纤网络的发展趋势
FTTH(光纤到家庭)是光纤通信进一步发展的方向,它被公认为理想的宽带接入网。所谓宽带业务,大多是500kbps的影视节目。运营商为了充分利用铜线资源,采用ADSL技术就可提供,这使FTTH成为接入网主流的时间有所推迟。不久的将来,在HDTV普及的情况下,ADSL不能满足要求,而先进的ADSL2+也许可满足1chHDTV/户。如果4chHDTV/户采用FTTH比较合理。在双向业务广泛应用的情况下,上下行不对称的ADSL难以对应。发达国家FTTH建设普遍开展,日本、韩国和美国比较发达,采用各种无源光网PON和以太网技术。中国的运营商和房地产开发商已对FTTH进行了试点。出现了所谓的网络电视(IPTV),电信运营商提出IPTV的初衷是考虑到有计算机的人少而有电视机的人多。提出的IPTV是采用专用的机顶盒连接电视机可直接浏览电信网的内容,而不要计算机。IPTV具有常规电视并兼有点播和时移电视的功能,可能会取代常规电视。由于IPTV的发展,影响光纤接入网和FTTH的构建。另外,也产生电信运营商和广播运营商的利益冲突。尽管有限制发牌照政策以保护广播运营商,但大势所趋,不可阻挡。实际上,许多广播运营商也开始改造其广播网为数字双向,也具备了发展IPTV的功能。广播运营商和电信运营商的界限开始有些模糊。
IPTV在国外开始高速发展。在国内,上海、河南等地也开始发展。
有人考虑到IPTV的发展,会使现有的城域网和接入网不胜负担,所以提出所谓的P2P(peer-对等)方法。P2P最初的概念是:所有用户都是信息接收者,又是信息发送者。即某用户把收到的节目用流媒体方法向其他用户转发出去(通常是让用户下载一个软件使其具备P2P功能)。这样便可减免都由中心向用户播发,以节省网络带宽。事实上,没有中心是不行的,网上至少要有1个中心服务器来管理。经过少量试行,发现IPTV流量太大,而用户的接入网根本无法满足P2P的传输,特别是ADSL原来就没有考虑到大量的上行,用户接入网负荷过重而崩溃。有人认为P2P是恶魔。
由于宽带业务的不断发展,现有的城域网、接入网的容量不足。对于运营商而言,最根本和实际有效的办法是对城域网和接入网扩容。事实上,采用WDM技术扩容,投资不很大,而可适应今后宽带业务的继续发展。
无线接入技术发展迅猛。人需要移动,采用无线接入比较方便。无线接入可满足数据传输的需要,但带宽有限,宽带的视频特别是HDTV仍需要采用光纤通信。
光纤通信需要发展光交换——采用电缆通信的网是金属网,传输的是电信号,在网络节点采用电子交换机进行交换。光纤通信的网是光纤网,传输的是光信号,在网络节点还没有全光交换机,在网络上只好采用“光-电-光”方式进行交换,即先把来自光纤网的光信号转变为电信号,用电子交换机进行交换,之后,又把电信号转变为光信号,再进入光纤网。这种方法是不经济的,需要开发可把光信号直接交换的光交换机。已经有小规模的光交换,它是作光线路保护的。通常这种光交换的通路是固定而不是可改变的,对于线路的调度不利。现正在开发具有自动交换的光网络称为ASON。ASON的关键技术是可重组光分插复用器ROADM,使线路可方便地调度。ASON不但可作光线路的保护,还可满足线路调度和今后发展出租电路的需要。已经有非全光的ASON产品。
通信网正在从SDH网向IP网过渡,交换机也要IP化。发展光网络还要考虑IP化,还要进一步发展光路由器,其中需要解决光地址的取存和光缓存技术。
光电子器件和集成光器件需要大力发展,因为光纤通信技术的发展,依赖光器件的进步。
由于网络的速率不断提高,单波长电子速率为40Gbps的光通信系统已经商用,速率为160Gbps的电子系统在试验室开发。因此,光电子器件要与之相适应,包括高速调制激光器等需要开发。实现ROADM需要发展波长可调的光滤波器、波长可调激光器和光开关等,其中有许多可创新的空间。
把许多分立的光电子器件集成在一起成为集成的光电子器件,其优点是功能丰富、体积小、速度高、可靠。已经有小规模集成的光电子器件,需要开发更大规模的光电子集成器件。混合集成可降低难度,提高成品率。混合集成的关键技术是平面光波导线路PLC,它是一块具有光波导的线路板,可把分立的光器件安装在上面。商用的光电子集成器件有8波长激光器模块、100波长以上的AWG光滤波器、AWG+光衰减器和32×32光开关等。光集成器件的工艺有单片集成和混合集成两种。集成光电子器件处于初级阶段,我国应迎头赶上,否则就会吃大亏。
光纤通信的优势是容量大和传输距离远。无线通信的优势是可移动,但带宽小。可以想象,近距离小容量的数据接入趋向采用无线接入,而大容量的视频影视采用光纤传输。卫星传输距离也很长,唯容量和寿命有限。无线和光纤通信是互补的,它们是永存的两个物理网。
优化宽带网络性能、提高宽带网络速率已经是现阶段提速降费趋势下的网络重点课题,作为宽带中国战略最底层的资源,光纤基础网络发展重心正在逐步转移,运营商正逐步从城市区域转向农村区域拓展。但农村地广人稀,光纤外线覆盖成本高而初期渗透率比较低,从解决方案层面看,运营商亟需一种更加适合农村区域光纤基础网络的建设和管理方式,让农村宽带建设能够既省钱又高效地推进。
从技术演进趋势来看,光纤基础网络的长远发展应同时兼顾建设和管理两个阶段:建设阶段将以快为关键字,向接入灵活化、预制化方向发展;而管理阶段将以准为关键字,向智能化、自动化方向发展。
E. 高精度光纤储罐检测系统的特点是什么
目前国内市场上,应用最为广泛的光纤传感技术当属布拉格光纤光栅和基于光时域反射的分布式传感器,这种技术基本上可以满足中低端市场的需求。而现在光谱线宽窄至2kHz的单频光纤激光器及其引申出来的最新一代光传感技术,这与传统的光纤传感有很大的区别,它可以进行超远距离的传输,精度和敏感度能达到更高的要求,这在高端市场上需求很大,目前该项技术在国内尚处于立项和预研阶段。国内市场上光纤传感器应用主要在以下四种:光纤陀螺、光纤光栅传感器、光纤电流传感器和光纤水听器。下面对这四种产品分别介绍一下。一、光纤光栅传感器。 目前国内外传感器领域的研究热点之一光纤布拉格光栅传感器。传统光纤传感器基本上可分为两种类型:光强型和干涉型。光强型传感器的缺点在于光源不稳定,而且光纤损耗和探测器容易老化;干涉型传感器由于要求两路干涉光的光强同等,所以 需要固定参考点而导致应用不方便。目前开发的以光纤布拉格光栅为主的光纤光栅传感器可以避免出现上面两种情况,其传感信号为波长调制、复用能力强。在建筑健康检测、冲击检测、形状控制和振动阻尼检测等应用中,光纤光栅传感器是最理想的灵敏元件。光纤光栅传感器在地球动力学、航天器、电力工业和化学传感中有广泛的应用。二、光纤陀螺。 光纤陀螺按原理可分为干涉型、谐振型和布里渊型,这是三代光纤陀螺的代表。第一代干涉型光纤陀螺,目前该项技术已经成熟,适合进行批量生产和商品化;第二代谐振型光纤陀螺,暂时还处于实验室研究向实用化推进的发展阶段;第三代布里渊型,它还处于理论研究阶段。光纤陀螺结构根据所采用的光学元件有三种实现方法:小型分立元件系统、全光纤系统和集成光学元件系统。目前分立光学元件技术已经基本退出,全光纤系统用在开环低精度、低成本的光纤陀螺中,集成光学器件陀螺由于其工艺简单、总体重复性好、成本低,所以在高精度光纤陀螺很受欢迎,是其主要实现方法。三、光纤水听器。 光纤水听器主要用来测量水下声信号,它通过高灵敏度的光纤相干检测,将水声信号转换为光信号,并通过光纤传至信号处理系统进行识别。与传统水听器相比,光纤水听器具有灵敏度高、响应带宽宽、不受电磁干扰等特点,广泛用于军事和石油勘探、环境检测等领域,具有很大的发展潜力。光纤水听器按原理可分为干涉型、强度型、光栅型等。干涉型光纤水听器关键技术已经逐步发展成熟,在部分领域形成产品;光纤光栅水听器则是当前研究的热点,研究的关键技术涉及光源、光纤器件、探头技术、抗偏振衰落技术、抗相位衰落技术、信号处理技术、多路复用技术以及工程技术等。四、光纤电流传感器。电力工业的迅猛发展带动电力传输系统容量不断增加,运行电压等级也越来越高,电流也越来越大,这样测量起来就非常困难,这就显现出光纤电流传感器的优点了。在电力系统中,传统的用来测量电流的传感器是以电磁感应为基础,这就存在以下缺点:它容易爆炸以至引起灾难性事故;大故障电流会造成铁芯磁饱和;铁芯发生共振效应;频率响应慢;测量精度低;信号易受干扰;体积重量大、价格昂贵等等,已经很难满足新一代数字电力网的发展需要。这个时候光纤电流传感器应运而生。光纤传感器技术是建立在光纤、光通信和光电子技术的基础上发展起来的,电磁干扰和腐蚀作用对它的影响很小,还能适应各种恶劣的气象环境,不要额外的电源进行供电,就可以长距离的进行传输,已成为传感器行业的研究热点。
F. 如何看光纤功放好坏
如果就肉眼观察的话主要看以下方面:
首先,因为是光纤功放的应该是带DAC功能的,DAC是核心器件,目前一般好的要在96KHz 24bit以上,品牌就比较多了,各有千秋.采样频率越高,相对而言解析度越高,对声音细节有帮助.
除了DAC外,就是功放部分是核心了.要看采用的是分立的还是用IC的.
如果是分立元件做的,线路用肉眼是看不出来的.只能从采用的晶体管品牌之类的判断.用的好会采用SANKEN,TOSHIBA等知名品牌
如果功放部分采用的是IC,线路一般采用的是厂家推荐的线路.关于功放IC的描述很容易查到.具体要看型号.厂家以ST,NS,PHILIPS等比较常见.
接下来就是看电源.主要是变压器和滤波的用量是否扎实.滤波电容余量是否足够等.
还有就是用料了.好的产品一般采用较好的材料.像电阻采用五环精密电阻,电容是否采用了ELNA,黑金刚,WIMA等品牌,电路板是否采用了双面或多层等等.
最重要还是听音,毕竟光纤功放是用来听的.可以找几首熟悉的,不同风格的曲子试听.总之没有完美的产品,只有适合自己的产品.
G. 光纤与光纤之间怎样连接
光纤与光纤的连接抄有两种方袭式:热熔接和机械接续:
热熔接是采用光纤熔接机,先将需要接续的光纤两端除去涂覆层,然后用清洁溶剂清洁光纤表面,再进行端面切割,这一步比较关键,光纤的端面切割做的好坏,直接影响熔接的质量,然后将光纤插入熔接机,可以通过显示屏观察的到光纤轴心自动对准过程,熔接完成后会显示接头衰减,安照我国施工规范规定,分立纤熔接衰减应该小于0.08dB,
机械接续(俗称冷接)是利用冷接子进行接续,操作非常简单,步骤同上差不多,但不需要熔接机,一般在光缆入户端采用,他的接续原理主要是靠冷接子内的适配液,接头衰减可以做到小于0.15dB,
H. 电子产品一共分几个级别
中文名称
片式电阻
插件金属膜电阻插件氧化膜电阻插件碳膜电阻
普通线绕电阻
水泥电阻
铝壳电阻
其它电阻
波恩斯电位器
国产电位器
国产旋纽
波恩斯旋纽
直滑式电位器
1206 0603 0805 铝电解电容
电解电容
电
容
金属化薄膜电容瓷片电容
独石电容
安规电容
表贴式电感
色环电感
磁
性
元
件电感插件电感磁珠
变压器1 环型、EI型、R型、C2 按瓦数分类
3 单相 三相
6*6轻触 欧姆龙B键钽电解电容金属化聚丙烯电容涤纶电容固定电阻器电阻电位器MLCC
开关轻触开关拨动开关不锈钢开关拨码开关钮掷开关
声光控开关
波段开关按层数分类光电开关
按键 直键开关
直流电磁继电器交流
1/11
继电器时间继电器
固态继电器温度继电器舌簧继电器
螺钉式PCB接线端子
非
半
导
体
类
接插件插拔式接线端子弹簧式接线端子端子台栅栏式接线端子贯通式接线端子PCB连接器插簧焊片
UT系列
冷压端子OT系列
护套
铜鼻子
威浦航插GX系列
航插XS系列
DF系列
PLT系列
XL系列
SMA系列
射频同轴连接器TNC系列
BNC系列
SMB系列
接线柱
测试孔
其他跳线帽
水晶头
DB头系列
2/11
保险元件滤波元件PCB板电机风扇保险管自恢复保险熔断丝保险座空开气体放电管电源滤波器实验板风扇及配件
电动机扬声器咪头蜂鸣器报警器音频接口吸盘线槽电源座鳄鱼夹导轨漆包线光纤头5*20 6*301P 2P 3P 4P 风机风罩电声器件
线材及配件
电线电缆屏蔽线缆线RVVP普通线缆RVV多股导线单股导线
射频线
电源线
扎带光纤
二极管
二极管 整流桥
整流桥
分立元件BJT三极管导
体
类
3/11
晶体管
半导体类
可控硅
IC(集成FET场效应管IGBT光电管
按
电路)
无源晶振表贴
插件
其他元件或组件普通晶振晶体晶振源晶振(含半导体器件温补晶振恒温晶振压控晶振LED(发光二极管)LED数码管点阵显示器件OLED显示器LCD液晶显示器霍尔传感器压敏电阻传感器PTC热敏电阻NTC温度传感器电池电池类电池扣电池盒号码管齿形管套管热缩管波纹管黄蜡管 压线钳钳类
4/11
其他元件或组件
工具防水接头散热器电源模块开关电源钳类螺丝刀焊接工具测量工具刃具排插海绵胶元件盒中科天地胜达昊天鸿海金胜阳普通钳子一字十字烙铁架焊锡丝洗板水吸锡线吸锡器焊锡膏焊台烙铁及配件锡炉表头尺万用表钻头丝锥电钻胶棒胶枪胶带703 704 502 AB胶电源
5/11
上一页
下一页
网络阅读,免费看书神器!点我马上拥有>>
网络作文宝,中小学作文神器,扔掉作文书!
网络文库下载更多相关搜索
I. 光纤传感器的发展前景
光纤传感器发展现状
国内市场上,应用最为广泛的光纤传感技术当属布拉格光纤光栅和基于光时域反射的分布式传感器,这种技术基本上可以满足中低端市场的需求。而现在光谱线宽窄至2kHz的单频光纤激光器及其引申出来的最新一代光传感技术,这与传统的光纤传感有很大的区别,它可以进行超远距离的传输,精度和敏感度能达到更高的要求,这在高端市场上需求很大,21实际初,该项技术在国内尚处于立项和预研阶段。国内市场上光纤传感器应用主要在以下四种:光纤陀螺、光纤光栅传感器、光纤电流传感器和光纤水听器。下面对这四种产品分别介绍一下。
一、光纤陀螺。 光纤陀螺按原理可分为干涉型、谐振型和布里渊型,这是三代光纤陀螺的代表。第一代干涉型光纤陀螺,21实际初期,该项技术就已经成熟,适合进行批量生产和商品化;第二代谐振型光纤陀螺,暂时还处于实验室研究向实用化推进的发展阶段;第三代布里渊型,它还处于理论研究阶段。光纤陀螺结构根据所采用的光学元件有三种实现方法:小型分立元件系统、全光纤系统和集成光学元件系统。21世纪初期,分立光学元件技术已经基本退出,全光纤系统用在开环低精度、低成本的光纤陀螺中,集成光学器件陀螺由于其工艺简单、总体重复性好、成本低,所以在高精度光纤陀螺很受欢迎,是其主要实现方法。
二、光纤光栅传感器。 目前国内外传感器领域的研究热点之一光纤布拉格光栅传感器。传统光纤传感器基本上可分为两种类型:光强型和干涉型。光强型传感器的缺点在于光源不稳定,而且光纤损耗和探测器容易老化;干涉型传感器由于要求两路干涉光的光强同等,所以 需要固定参考点而导致应用不方便。21世纪初期开发的以光纤布拉格光栅为主的光纤光栅传感器可以避免出现上面两种情况,其传感信号为波长调制、复用能力强。在建筑健康检测、冲击检测、形状控制和振动阻尼检测等应用中,光纤光栅传感器是最理想的灵敏元件。光纤光栅传感器在地球动力学、航天器、电力工业和化学传感中有广泛的应用。
三、光纤电流传感器。电力工业的迅猛发展带动电力传输系统容量不断增加,运行电压等级也越来越高,电流也越来越大,这样测量起来就非常困难,这就显现出光纤电流传感器的优点了。在电力系统中,传统的用来测量电流的传感器是以电磁感应为基础,这就存在以下缺点:它容易爆炸以至引起灾难性事故;大故障电流会造成铁芯磁饱和;铁芯发生共振效应;频率响应慢;测量精度低;信号易受干扰;体积重量大、价格昂贵等等,已经很难满足新一代数字电力网的发展需要。这个时候光纤电流传感器应运而生。
四、光纤水听器。 光纤水听器主要用来测量水下声信号,它通过高灵敏度的光纤相干检测,将水声信号转换为光信号,并通过光纤传至信号处理系统进行识别。与传统水听器相比,光纤水听器具有灵敏度高、响应带宽宽、不受电磁干扰等特点,广泛用于军事和石油勘探、环境检测等领域,具有很大的发展潜力。光纤水听器按原理可分为干涉型、强度型、光栅型等。干涉型光纤水听器关键技术已经逐步发展成熟,在部分领域形成产品;光纤光栅水听器则是当前研究的热点,研究的关键技术涉及光源、光纤器件、探头技术、抗偏振衰落技术、抗相位衰落技术、信号处理技术、多路复用技术以及工程技术等。
光纤传感器技术是建立在光纤、光通信和光电子技术的基础上发展起来的,电磁干扰和腐蚀作用对它的影响很小,还能适应各种恶劣的气象环境,不要额外的电源进行供电,就可以长距离的进行传输,已成为传感器行业的研究热点。
传感器一直朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍却是倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能。光纤传感器应用于对磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和应变等物理量的测量。其应用范围十分广泛。因此我们可以说光纤传感器具有很大的市场需求,不说长久,至少在未来5年,光纤传感器将会有广阔的发展前景。
光纤传感技术及其相关技术的迅速发展,满足了各类控制装置及系统对信息的获取与传输提出的更高要求,使得各领域的自动化程度越来越高,作为系统信息获取与传输核心器件的光纤传感器的研究非常重要。光纤传感器技术发展的主要方向是:(1)多用途。即一种光纤传感器不仅只针对一种物理量,要能够对多种物理量进行同时测量。(2)提高分布式传感器的空间分辨率、灵敏度,降低其成本,设计复杂的传感器网络工程。注意分布式传感器的参数,即压力、温度,特别是化学参数(碳氢化合物、一些污染物、湿度、PH值等)对光纤的影响。(3)新型传感材料、传感技术等的开发。(4)在恶劣条件下(高温、高压、化学腐蚀)低成本传感器(支架、连接、安装)的开发和应用。(5)光纤连接器及与其它微技术结合的微光学技术。
光纤传感运用主要分为五大方向:
(1)石油和天然气——油藏监测井下的P/T传感、地震阵列、能源工业、发电厂、锅炉及蒸汽涡轮机、电力电缆、涡轮机运输、炼油厂;
(2)航空航天——喷气发动机、火箭推进系统、机身;
(3)民用基础建设——桥梁、大坝、道路、隧道、滑坡;
(4)交通运输——铁路监控、运动中的重量、运输安全;
(5)生物医学——医用温度压力、颅内压测量、微创手术、一次性探头。