光纤设备功能
❶ 光纤收发器的作用是什么
光纤收发器只是一种光电转换设备,仅仅只是用于因传输距离过远而采取的版一种延长传输距离的一种手权段。
❷ 光纤的接入设备有那些啊各是什么功能
网络上别人回答过了啊,看资料吧
❸ 移动光纤有啥功能
1、移动光纤宽带的意思是把要传送的数据由电信号转换为光信号进行通讯。专 在光纤的两端分别都装有"光猫"进行属信号转换。
2、移动光纤是宽带网络中多种传输媒介中最理想的一种,移动光纤的特点是传输容量大,传输质量好,损耗小,中继距离长等。光纤传输使用的是波分复用,即是把小区里的多个用户的数据利用PON技术汇接成为高速信号,然后调制到不同波长的光信号在一根光纤里传输。
❹ 谁知道光通信的基本设备组成和功能
光通信就是以光波为载波的通信。随着信息时代的到来,人们对光通信带宽的需求日益增内加,增加光容路带宽的方法有两种:一是提高光纤的单信道传输速率;二是增加单光纤中传输的波长数,即波分复用技术(WDM)。
目前宽带城域网(BMAN)正成为信息化建设的热点,DWDM(密集波分复用)的巨大带宽和传输数据的透明性,无疑是当今光纤应用领域的首选技术。然而,MAN等具有传输距离短、拓扑灵活和接入类型多等特点,如照搬主要用于长途传输的DWDM,必然成本过高;同时早期DWDM对MAN等的灵活多样性也难以适应。面对这种低成本城域范围的宽带需求,CWDM(粗波分复用)技术应运而生,并很快成为一种实用性的设备。目前应用的光设备主要有:①光器件有光耦合器,光复用器,光滤波器,光纤连接器和衰减器,光检测器,光放大器,光调制器与开关;②光发射机;③光接收机。
❺ 光纤有关的设备作用,求解
正确的,没有错误
❻ 什么是光纤设备,如何使用
顾名思义,一切以光纤为应用对象的设备,称作光纤设备。光纤设备一般包括:光纤配线箱、光纤连接器、光纤收发器、光纤放大器、光纤传感器等。
❼ 急!光纤通信的子系统的设备是什么以及功能
什么是误码?误码的基本概念是:在数字通信系统中,当发送端发送"1"码时,接收端收到的却是"0"码;而当发送端发送"0"码时,接收端却接收到了"1"码,这种接收码与发送码不一致的情况就叫做误码。产生误码的主要原因是传输系统的噪声和脉冲抖动。
在数字光纤通信系统中,误码性能用误比特率BER来衡量。
BER=错误比特数/传输总的比特数
对于数字光通信系统来说,一般要求系统的误比特率小于10-9。
抖动特性
抖动,又称为相位抖动,是指数字脉冲信号的相位摆动,或时间上的前后摆动。
在系统测量中,描述抖动程度的单位是"单位间隔",简写为UI,其意义是指一个码元的时间长度。对于不同的群次,、不同码速率的相应1UI的时间是不相同的。例如,对于PCM一次群信号,1UI=1/(2.048*106)ns≈122ns ;而对于PCM二次群信号,依此类推。另外,抖动还可以用"度"为单位来表示,并规定1UI=360°。
在光前数字通信系统中,必须把抖动限制在一定的范围之内,否则,会导致定时脉冲的相位偏离最佳判决位置,结果造成误判概率的增加和引起再生脉冲流的时间间隔不规则,码间距不一致。
铁腕高压,直接检测
强度调制-直接检测系统(Intensity Molation/Direct Detection)是最简单的一种传输方式,目前大多数的光纤通信系统都采用这种传输技术。"强度调制"是指在发送端,用电的脉冲信号来控制光源,使其按照信号的强弱发光或者不发光;"直接检测"是指在接收端用光电检测器直接检测光的有无,再转化为电信号。从历史的眼光来看,这仅相当于无线电技术发展初期的马可尼时代。
系统的中继距离
我们知道,光纤数字通信系统是适于远距离、大容量通信的。在长距离传输中,需要使用中继器来放大经过长距离传输而减弱了的信号,就像接力赛跑一样,一个人累了的时候需要换一个人继续向前传递。在通信系统中,中继距离越长,中继站数目越少,系统的成本就越低,可靠性也越高。延长系统的中继距离是科技工作者的奋斗目标之一。
光纤数字传输系统的最大中继距离是指在光发射机和光接收机之间不设中继器时能传输的最远距离,在设计一个光纤通信系统时,计算最大中继距离是十分重要的。
光纤传输系统的最大中继距离由四个因素决定。
1.发送机输出耦合进光纤的平均光功率。耦合进光纤的功率越大,中继距离越长。
2.光纤的色散,若光纤的色散大,则经过一定距离传输后出现的波形失真就严重。传输的距离越长,波形失真就越严重。在数字通信系统中,波形失真将引起码间干扰,使光接收灵敏度降低,影响系统的中继距离。
3.光纤的损耗。光纤线路的损耗包括光纤活动连接器损耗和光纤的熔接损耗,当然主要是光纤的每公里损耗。如果光纤每公里损耗越小,则信号光功率在光纤上的损失就越小,光信号在光纤中的传输距离就越远。
4.满足一定误比特率要求的光接收机灵敏度。接收灵敏度越高,即满足系统误比特率要求的最低接收光功率越小,中继距离就越长。
对于某一光纤通信系统来说,发送光功率和光接收灵敏度一般都是已知的,影响其中继距离的因素主要是损耗限制和色散限制。对于单模光纤通信系统来说,传输速率在140Mb/s以下的系统一般只受损耗限制,色散对其影响不大;而传输速率在565Mb/s以上的系统,由于光源有一定的谱线宽度,可能会给中继距离带来较大影响。现在,采用动态单纵模激光器,特别是多量子阱激光器(MQW)后,连传输速率为2.5Gb/s的系统也几乎不受色散限制了。
同步数字序列
在数字通信发展的初期,为了适应点到点通信的需要,大量的数字传输系统都是准同步数字体系(PDH),准同步是指各级的比特率相对于其标准值有一个规定的容量偏差,而且定时用的时钟信号并不是由一个标准时钟发出来的,通常采用正码速调整法实现准同步复用。
随着数字交换的引入,由光通信技术的发展带动的长距离大容量数字电路的建设,以及网络控制和宽带综合业务数字网(B-ISDN)的发展需要,暴露了现有的准同步数字序列存在的一些固有弱点。主要是:北美、日本、欧洲三种数字体制互不兼容;没有世界性的标准光接口规范,在光路上无法互通和调配;难以上、下话路;网络维护管理复杂,缺乏灵活性,无法适应不断演变的电信网的要求。
随着光纤通信技术和大规模集成电路的高速发展,1986年美国提出了一种以光纤通信为基础的同步光纤网(SONET)概念,作为现代化通信网的基本结构。1988年ITU-T对SONET概念进行了修改,重新命名为同步数字序列,简称SDH,使之成为不仅适用于光纤通信,也适合于微波和卫星传输的体制。现在SDH已经成为国际上公认的新一代的理想传输网体制。
在电信网中所运载的种类繁多的信息首先必须规范化,然后再纳入数字序列的某一级的一种速率信号之中,即成为电信网所传输的异步或同步数字序列信号的内容。SDH的最低分级是155.520Mb/s,称为基本传送模块,用STM-1表示。STM-N则表示速率为N×155.520Mb/s的传送模块,其中N一般取1、4、16、64、256。
下面是光纤通信传输体制的发展历程:
1972 年ITU-T前身CCITT提出第一批PDH建议
1976和1988年又提出两批建议--形成完整的PDH体系
1984年美国贝尔实验室开始同步信号光传输体系的研究
1985年美国国家标准协会(ANSI)根据贝尔实验室提出的全同步网的构想,委托T1X1委员会起草光同步网标准,并命名为SONET(Synchronous Optical NETwork)
1986年CCITT开始以SONET为基础制订SDH
1988年通过了第一批SDH建议
1990以后,SDH已成为光纤通信基本传输方式;目前,SDH不仅是一套新的国际标准,又是一个组网原则,也是一种复用方法。
下面列出了几种传输技术(既包括电又包括光)的实现方式:
明线技术,FDM模拟技术,每路电话4kHz;
小同轴电缆6O路FDM模拟技术,每路电话4kHz;
中同轴电缆1800路FDM模拟技术,每路电话4kHz;
光纤通信140Mb/s PDH系统,TDM数字技术,每路电话64kb/s;
光纤通信2.5Gb/s SDH系统,TDM数字技术,每路电话64kb/s;
光纤通信N×2.5Gb/s WDM系统,TDM数字技术+光频域FDM模拟技术,每路电话64kb/s。
❽ 光纤的作用
光纤」除应用在大量资讯传输之外,一般最常用的则是影像传送,例如工程师
可在安全距离检查核能电厂的辐射区,「光纤」在医学上的应用也很多,例如内
视镜,它是一根柔软可弯曲且内含数条「光纤」的管子.当它滑入病人的嘴,鼻,
消化道及其它心脏等由体外看不到的地方时,医生便能由内视镜看到内部变化,
而减少进行冒险性手术的需要.
光纤的应用范围很广,光纤除了作通讯用
途外,还可以用来制造内窥镜等医疗器材,光纤感应器或光纤装饰,交通,夜视
感测器度量测量和控制工程显微镜学,显微镜学,机器视觉,照明,成像,健康,
电荷耦合元件(CCD)汽车等.所以逐渐替代铜线成为主要的通讯媒介.
光纤应用新技术
70年代后期,光纤技术开始进入商业领域,光纤的一
些固有特性优点(如不受噪声干扰以及较高的传输带宽等)
使它成为了各种应用领域中的理想传输介质。高传输速率
系统的垂直干线用光纤来实现已经成为了网络设计者们的
首选设计方案。对这些垂直主干上的光电器件的投资通常
可在带宽和保密性方面得到补偿。但是,在水平工作区,
光纤的应用长期被忽视。八十年代初,终端用户开始将光
缆安装到工作站的信息出口,希望在将来会有经济实用的
光纤产品问世,但是大多数用户所安装的水平光缆是在“
黑暗”模式下工作的,这是因为系统光电器件不能达到要
求的带宽,并且价格太高。
由于没有经济实用的光纤产品,用户对光纤水平区布
线失去了兴趣。近来,由于布线标准的改变以及光电器件
、光缆、连接器技术的发展和应用带宽的逐步升级,很多
用户开始重新考虑用“光纤到桌面”来替代水平布线系统
中的铜缆方案。下面我们将对一些与此相关的技术问题和
标准加以讨论。
光纤连接器技术的发展
近几年,光纤连接器、光缆和光电器件等光纤技术得
到了长足的发展。光纤连接器的物理尺寸和外形(如ST、
SC接口)的改变一直被产品开发者和最终用户们所关注。
由于许多局域网中的应用只要求使用两根光纤(一根用于
发射,另一根用于接收),所以在大多数情况下需要使用
双芯光纤连接器。双芯光纤连接器的尺寸总是比用于非屏
蔽双绞线(UTP)布线系统的RJ45插座的尺寸要大得多,考
虑到配线架上连接器的密度,非屏蔽双绞线(UTP)布线系
统将更有吸引力。在工作站信息出口,双芯光纤连接器也
存在着严重的空间问题——在一个单孔美标安装盒上,很
难设计出能支持2个以上双芯光纤连接器的面板和模块。
为了解决这个问题,几个生产商开发出了小尺寸的双
芯光纤连接器,使光纤连接器可以在尺寸上与RJ45连接器
竞争。这些连接器中有几种在设计上很有创意,且大大减
少了光纤端接所需的时间。一些厂商还和光电器件生产厂
商结成伙伴关系,来生产相同外形尺寸的耦合器以安排LE
D/PIN 对,支持了新型光纤连接器的生产。然而,当前EI
A/TIA TR41.8 建议中规定,在工作站一端仍然把SC 双芯光
纤连接器作为标准光纤连接器,而在电信间一端则可以使
用任何光纤连接器。不管TR41.8 如何看待这一问题,小尺
寸光纤连接器的开发已使得光纤连接器和UTP 连接器的尺
寸基本相当。
光纤技术的发展
短波长是指850nm,而长波长则是指1300nm 。表1 给
出了多模光纤两个波段的独立工作窗口。这些工作窗口是
由光纤的衰减特性决定的。然而,1996年以后,由于光纤
制造技术的进步,光纤衰减特性得到了改善,使得光纤在
整个 720nm~1370nm的波段内都可以使用。这对波分复用
(WDM)系统的开发是很重要的。
表2给出了62.5nm和50nm光纤在特定波段的特性比较。
两种纤芯尺寸都可用于局域网。从表2中可以明显看出,5
0nm光纤的带宽与波长无关,这是50nm光纤的一大优点,然
而,由于其纤芯尺寸与常用的62.5nm光纤有差异,使用50
nm光纤会产生3dB的能量衰减。如果能量大到在最坏的链路
情况下能容纳这3dB的衰减,那么它所增加的带宽就可以支
持更多的应用了(如千兆位以太网),并有很大的带宽余量
。
既然62.5nm光纤的信号衰减在820nm至920nm波段内是
最大的,那么为什么它仍工作在这一波段呢?很简单,这
是因为光电器件(LED和PIN)与相应的长波长器件比较价
格很低,只有其价格的30% 左右,因此使用短波长光电器
件是非常重要的。
光纤器件的发展
发光二极管(LED)和PIN 光电二极管是短波长多模光
纤中最常用的光源和光检测器。LED 可以支持的数据速率
高达125Mbps。普通PIN受噪声影响较大,为了减少噪声的
影响,在PIN封装中增加了一个互阻抗放大器,这种光检测
器就是PIN-FET组件。这种器件的优点是造价较低,但LE
D 可支持的传输速率较低,难以将其应用在高速数据传输
的场合中。
激光器(laser)和雪蹦光电二极管(APD)是另一类
用于光纤系统的光源和探测器。这些器件可支持极高的数
据传输速率。APD有很高的量子效率,这使其非常适合于“
弱光”应用。然而,这两种器件都很复杂,要保持它们稳
定地工作对电子和温度的控制要求都很高。正是这种复杂
性使得它们的应用费用相当高,因而限制了使用。
“激光原则”的一个例外是工作于短波长波段的垂直
腔表面发射激光(VCSEL)。它与LED相比的优点是——它是
一种半导体激光,可支持高达2Gbps的传输速率。而且,它
的驱动电流小,输出光功率可达1mW(0dBm),光谱宽度小于
0.5nm。更重要的是它对电路的要求较低,从而大大地简化
了设计要求,同时也降低了器件造价。VCSEL在封装上也优
于 LED ,它不需要棱镜,几个VCSEL 可以在同一个基片上
组成一个阵列,这使其非常适合于带状光纤和WDM应用。上
述优点使得VCSEL成为理想的光源。VCSEL优越的带宽性能
使多模光纤成为千兆以太网应用的理想选择之一。表3 给
出了LED和VCSEL的比较。
光纤标准
用户和网络设计者们越来越关心电磁干扰/射频干扰(
EMI/RFI)、带宽、链路距离、数据安全性和网络故障等问
题。能同时满足上述各项指标要求的唯一介质就是光纤。
1995年,TIA/EIA TSB-72 标准的出台和1998年TIA 光纤
局域网小组(FOLS)短波长联盟的形成就是最好的证明。
TSB-72是一种集中式光纤布线系统的标准。TSB-72
允许光纤布线的距离为300米,使网络设计者可以利用长传
输距离去将网络电子设备(如路由器、集线器和交换机等
)集中到一个设备间内。这种结构给用户提供了一个由当
前共享带宽环境过渡到交换环境的途径。集中式网络结构
增加了网络的灵活性,简化了网络的扩充、移动、变更和
管理,减少了网络的故障时间,最重要的是它显著地减少
了安装费用。
100Mbps快速以太网是增长速度最快的一种局域网应用
。1995年IEEE802.3u 100BASE-FX 标准定义了光纤介质的
快速以太网标准。100BASE-FX 标准采用FDDI标准的信号
编码(4B5B编码)方式和物理介质信号部分。它使用长波
长(1300nm)光电器件,而长波长(1300nm)光电器件的
价格比短波长(850nm)光电器件的价格高许多(前面已介
绍过)。因此,IEEE 目前正在制定一个新标准——100BA
SE-SX。一些相关的厂商也在1998年1季度成立了短波长联
盟。它的任务就是制订采用低成本短波长光纤器件的快速
以太网标准。注意,这是非常重要的。它的短期目标是:
1.降低成本,即采用普通的光电器件,通过使用已开
发出的短波长光电器件(LED和PIN)达到降低成本的目的
。
2.100BASE-SX标准将与10BASE-FL标准兼容。
3.可采用连接器。
4.易于升级到100Mbps。
介质转换
完整地考虑一个光纤到桌面的解决方案,不仅要有光
纤信息出口(ST、SC、平直或倾斜等)和光纤配线箱(ST
、SC、墙面安装型、机柜安装型、可抽拉式等),还需要
考虑光纤直接到桌面后计算机网卡及集线器等设备的问题
。
因此,在众多的光纤到桌面解决方案中,很多技术人
员会碰到网络设备的造价将会提高很多这样一个很现实的
问题,即我们平常使用的计算机网卡将被换成光纤网卡,
普通集线器的RJ45出口也不能再使用了,而是被纯光纤出
口的集线器所取代。由于光纤网卡及光出口的集线器价格
非常昂贵,致使整个系统造价上升,所以光纤到桌面现在
在国内还基本上只是纸上谈兵。
一种非常实用的实现光纤到桌面的方法是使用介质转
换器(即光电转换器)。这种器件使局域网的升级非常简单
,且可以保护铜缆LAN设备的投资。
❾ 光纤有什么作用
由于光在来光导纤维的传导损耗比源电在电线传导的损耗低得多,所以光纤被用作长距离的信息传递。
光纤是光导纤维的简写,是一种由玻璃或塑料制成的纤维,可作为光传导工具。光纤的一端的发射装置使用发光二极管或一束激光将光脉冲传送至光纤,光纤的另一端的接收装置使用光敏元件检测脉冲。
(9)光纤设备功能扩展阅读:
光纤的主要种类:
1、石英光纤:石英(玻璃)系列光纤,具有低耗、宽带的特点,已广泛应用于有线电视和通信系统。
2、红外光纤:作为光通信领域所开发的石英系列光纤的工作波长,尽管用在较短的传输距离,也只能用于2μm。红外光纤主要用于光能传送,例如有:温度计量、热图像传输、激光手术刀医疗等。
3、复合光纤:特点是多组分玻璃比石英玻璃的软化点低且纤芯与包层的折射率差很大,主要用在医疗业务的光纤内窥镜。
4、塑包光纤:与石英光纤相比较,具有纤芯粗、数值孔径高的特点。塑包光纤易与发光二极管LED光源结合,损耗也较小。所以,塑包光纤非常适用于局域网和近距离通信。