光纤溶出度
『壹』 激光溶脂的简介
激光溶脂是一项最新的瘦身技术,根据吸脂医生介绍,激光溶脂是运用一定能量的特殊激光,经电脑数字定位后在体外对着肥胖部位照射数分钟,以此将体内脂肪溶化掉,从而达到明显的瘦身效果。
激光溶脂瘦身手术是结合激光技术和注射技术的一种去脂手术,激光溶脂瘦身和一般的3L定位分层吸脂手术不同的地方就在于它的创伤更小,激光溶脂瘦身治疗是先对需要消脂的部位进行药物注射,让脂肪软化分解了以后再采用激光进行照射从而达到最终的去脂目的,所以,在整个的激光溶脂瘦身治疗过程中,所需要进行的创伤性操作也就是注射一种,所以这种激光溶脂瘦身治疗是非常安全的,激光溶脂瘦身特别适合用于腰腹部等有明显脂肪堆积的部位进行消脂,这种激光溶脂瘦身治疗的特点还在于恢复快,激光溶脂瘦身在治疗完成后几天内就可以恢复正常的工作和生活,这是吸脂手术做不到的,所以不会打乱原本的各项计划。
特点
数字定位,“照哪儿瘦哪儿”
这项技术不但可以应用于腹部、腰部、腿部、臀部,更加特别适应于手臂、脸部、颈部这样脂肪层较薄却极难通过其他方式减脂的细小局部精细部位。也就是说,如果你正在为你的胖脸蛋儿烦恼,那么,只要去接受“激光溶脂”,多余的油汁在人体正常的代谢下就可以消失的无影无踪,让爱美的你得偿夙愿,真正做到“照哪儿瘦哪儿”。
安全,损伤小,不见血
很多女孩是见血晕,激光溶脂就让你不再有这种担忧!激光溶脂肪是以1至2毫米光纤发射激光进入脂肪层,不会损伤皮肤及血管及神经系统,肉眼几乎观察不到出血。
纯脂率90%
激光溶脂有着高达90%的惊人纯脂率,这让你能一次性地溶解更多脂肪,保证达到理想的吸脂效果。激光溶脂其独特脂肪液对脂肪进行全方位的液化,在溶解脂肪的同时,把溶解的脂肪溶出体外,明显增加了纯脂肪的排出量。
平滑紧致
与传统抽脂手术相比,激光溶脂是通过激光能量一个部位一个部位均匀地扫过去,术区与非手术区平缓过渡,避免凹凸不平,皮肤光滑、紧缩不松弛。另外,激光溶脂术所采用的激光只作用在设定的脂肪层上,不仅不伤及表皮肤,还能加速皮肤弹性纤维的自我修复、刺激胶原蛋白增生,让吸过脂肪的皮肤依然保持紧致、光滑、平展。 激光溶脂术适应于那些体重相对正常,但局部肥胖,不成比例的人。这些局部脂肪堆积对减肥和体育锻炼无反应。吸脂术也适应于中度肥胖及伴有皮肤松垂的患者。对于肥胖伴有皮肤松垂的患者,在脂肪抽吸的同时还可行松弛皮肤切除,达到更好的手术效果。
身体能够吸脂的部位很多,常吸的部位有:腹部、髂腰部、臀部、胸部(包括男性乳腺肥大)、背部、大腿、上臂、小腿后部及下颌部等等。 1、手术之前要做好消毒工作,大家千万别认为这个工作是无关紧要的,事实上,消毒工作可以说是整个手术成功的基础。手术时既可以选择表皮麻醉也可以选择冰敷麻醉,两种方法都是可以的,这主要看患者的意愿。
2、手术之前要观察并做好确认没有感染或者发红的现象出现,手术之前要做好全面的身体检查,没有任何疾病,男性在手术之前一周内要停止吸烟,女性要尽量避免在月经期间进行手术。
3、手术过后可以用冰敷伤口,但是手术过后一天内不能碰水,两天后不能用热水洗也不能进行过于剧烈的运动。一些体力活最好是不要再做了、手术过后两天内禁止喝咖啡或者是茶,平时可以喝一些白开水,术后严禁食用刺激性食品和碳酸性饮料。
4、一般手术过后十天就会出现效果,患者千万不能因为心里着急而做出一些不正确的举动,溶脂瘦身是目前最先 进的减肥瘦身方法之一,患者要对手术有信心。 1)过敏反应测试与肥胖测试
无论是什么吸脂方法,安全一定是最重要的,为了保证吸脂手术的安全性,在做激光注射溶脂前,对注射药液的过敏反应测试是必不可少的第一步,还有确定你的肥胖类型以便医生对症下药;
2)开枪射击
确定无过敏后,经过严格培训的专业医生会通过专用的消脂枪(mesogun)将溶脂药液缓慢地注射到皮下脂肪层,消除脂肪的囤积,促进局部脂肪的活化;
3)紧肤震动按摩
注射后,医生会再次将你的治疗部位消毒,盖上无菌毛巾,结合紧肤仪器进行震动按摩,将使药液均匀的在脂肪层分布,通过震动松解局部的脂肪组织,使脂肪与药液充分融合;
4)激光照射
溶脂减肥的关键时刻,将脂肪细胞作为靶细胞,通过特殊激光的照射使脂肪组织中的微循环毛细血管吸收热能,加速药液反应,使脂肪细胞的细胞膜发生萎缩甚至破裂,脂肪就会自行凋亡代谢出体外;
5)后期健康管理
为了维护减肥效果,后期的健康维护也是必不可少的。医生会给出针对个人情况制定个性化的饮食、生活计划,你只需要严格按照医生的计划去做,养成良好的生活习惯,瘦身效果就会长久维持。
激光注射溶脂减肥治疗全过程只约需30分钟,你可能会有极轻微的痛感,不过因为针头相当细小,加上注射药品可加入局部麻醉剂,通常并不会觉得特别不舒服,有点像小蚂蚁在咬你的皮肤,完成后可实时回复日常工作。治疗后4——7天就开始见效。5到10个疗程就能消除身体肥胖。
『贰』 求高分子量聚异丁烯(聚异丁烯橡胶)的具体应用
聚异丁烯的用途工业用途(1)粘接剂(包括压敏胶方面)聚异丁烯和多种高分子量的物质混合在一起,例如:天然橡胶;合成橡胶;高分子量聚异丁烯,石油;无毒和高透明性,用在物品的商标的粘贴,由于聚异丁烯的此种性能,此原料还广泛用于汽车;冰箱防水密封胶领域。合成橡胶基体的压敏胶:常用聚异丁烯作主要成份,例如透明压敏带是聚异丁烯弹性体的高分子与半液体按一定比例混和后涂于透明基材上的。密封腻子配方聚异丁烯38.5液体聚异丁烯61.5液体石蜡38松香10氧化锌54石棉绒50三氧化二铬10此配方主要用于金属粘接缝隙及其他接缝的密封。抗剪强度49KPa。具有较长的贮存期,贮存一年不变质。高分子量聚异丁烯与聚乙烯共混作电缆涂层,还可用于防水胶布、防水石、蜡纸以及热熔胶中。(2)电子绝缘方面:聚异丁烯和天然橡胶以及合成橡胶(丁基胶;SBR)相混合后,具有很好的防水和高强度的透气性能,因为其具有抗老化和抗氧化性,聚异丁烯还用于绝缘带以及电线和通信电缆的防腐蚀带方面。粘性浸渍纸绝缘电力电缆其浸渍剂粘度较高,在电缆工作温度范围内不易流动,但在浸渍温度下具有较低粘度,可保证良好浸渍。粘性浸渍剂不少国家采用聚异丁烯和光亮油混合而成低压电缆浸渍剂(光亮油约占65~70聚异丁烯约占30~35)。因其优异的绝缘性能,用作电缆套管/接头击穿电压值很高为了提高通信电缆的防潮性、稳定性,在市内电话电缆中广泛采用综合型电缆护层。Alpeth:缆心外挤压一层聚乙烯护层,再搭接地纵向包裹0.2毫米皱纹铝带,充以聚异丁烯绝缘复合物后外敷一层热塑性胶粘层,最外面挤压一层聚乙烯护套。(3)在石蜡和其改型产品(微晶形腊[Micro-crystallinewax])在石油蜡中,有时要加入聚异丁烯以改善蜡的韧性和粘附性。聚异丁烯和石蜡或微晶形腊混合后,就会在拉力强度方面增加抗拉性并在低温和潮湿情况下改进产品的脆度,尤其用于冷冻食品的包装,其具有高柔软性和抗酸性。(4)防水材料方面可制成弹性无胎防水卷材、防水薄膜、防水涂料、涂膜材料、以及油膏、胶泥、止水带等密封材料。这些制品具有拉伸强度高、弹性及延伸率大、粘结性、抗水性和耐候性好等特点,可以冷用,使用年限较长。还可用于复合式衬砌(分内外两层先后施作的隧道衬砌)两层衬砌中间的防水层。如果聚异丁烯与沥青粘接剂,防水剂以及工程用密封胶和电子绝缘产品混合在一起的时候,其产品的伸缩性和抗冷性能将会有很大的改变。能改善沥青路面的耐热性、耐负荷性、防滑性和防裂性等。在用于屋顶涂料方面,使用聚异丁烯后,会增加低耐候以及产品低温方面的性能也会有很大的改变屋顶密封层参考配方:50%碳黑+8-10%聚乙烯/聚氯乙烯+20-30%B150(5)粘度指数改进剂也称增粘剂。用以提高油品的粘度,改善粘温特性,以适应宽温度范围对油品粘度的要求。主要用于调配多级内燃机油,也用于自动变速机油及低温液压油等。(6)密封胶聚异丁烯具有优异的耐大气,耐老化和耐久性的特点,并且还具有低的湿气透率和不产生雾烟,非常适用于保温玻璃的密封剂,双层玻璃门、窗的阻隔密封剂。聚异丁烯与炭黑和抗氧化剂以及紫外线吸收剂用在生产中空玻璃的密封胶方面可以增加产品的柔韧性和渗透性,由于国内在中空玻璃的生产方面,国家在环保方面非常的重视,因此,在此方面的用途,聚异丁烯的用量将会逐步增加。(7)胶粘带良好的耐候性>NR、粘性Acrylic、低极性Acrylic/rubber使其广泛用于胶粘剂行业自粘绝缘带中/高分子量均可,Cableinsulation, underground pipeline against corrosion普通胶粘带中/高分子量均可need to develop Hotmelt adhesives often contain low, medium and high MW PIB, mainly content arelow and high MW PIB(8)膜与石墨一起作导电膜;与铁酸钡一起作磁膜用于薄膜中,可与碳黑、石墨、白垩、页岩、石英、粘土及滑石等填料配伍;可塑性大;耐水耐候性好汽车保护膜:整车,零件及生产过程之部件保护与PE、PP混用absorb filler in large quantity,加入EVA共聚物,PP,HDPE,LDPE及LLDPE中,可改进其物理强度(9)高分子减阻剂在消防水带中加入高分子减阻剂后,用直径较小的水带仍能维持水的流量不变,便于消防人员携带;在农田灌溉中加入减阻剂后,可提高灌溉效率,扩大灌溉面积;在输水和输油系统中加入减阻剂可节省能耗;在泄洪管道中,当出现洪峰时用减阻剂也可提高泄洪效率;在油井钻探方面,在注入水中加入高分子减阻剂可大大提高注入速率。(10)在炸药中的应用塑性炸药由猛炸药和粘结剂、增塑剂制成。特点是有良好的可塑性,能制成各种形状。通常以聚异丁烯作粘结剂、癸二酸二辛酯作增塑剂,广泛采用悬浮法制造。挠性炸药特点是具有一定的弹性、韧性和挠性。可以折叠、弯曲,耐水性好,外观像橡胶、皮革或软塑料制品,可用来做成绳索、板片、薄膜、条带、管状和锥孔等形状。主要在一些特殊爆炸场合和装置上使用。如水下切割、航天、金属爆炸加工等。烟火药以镁与镁合金为主要成份的,聚异丁烯稠化的三乙基铝的燃烧剂。三乙基铝是一种能自燃物质,燃烧温度可达2300℃,通常用聚异丁烯等稠化后用作燃烧剂。(11)印刷品的表面加工表面加工是在印刷品的表面经适当的处理,增加印刷品的光泽,或增加印刷品的耐光性,耐热性、耐水性、耐磨性等,起到保护印刷品的作用。热熔复合法热熔复合法是用聚异丁烯等的改性蜡类,加热使其呈溶液状态,涂布于薄膜基材上,第二基材直接贴合其上,再用冷却滚简冷却而复合。这种方法涂布粘合剂后不用干燥的工序,装置比干式复合法简单,适用于铝箔/纸,塑料/塑料、塑料/铅箔的复合。(12)高分子气体传感器高分子气敏材料在遇到特定气体时,其电阻、介电常数、材料表面声波传播速度和频率、材料重量等物理性能发生变化。高分子气敏材料由于具有易操作性、工艺简单、常温选择性好、价格低廉、易与微结构传感器和声表面波器件相结合,在毒性气体和食品鲜度等方面的检测中具有重要作用。高分子气体传感器具有对特定气体分子灵敏度高,选择性好,且结构简单,能在常温下使用,可以补充其它气体传感器的不足。(13)瓦楞纸印刷中常见的柔性版制版方法模压橡胶凸版:把天然橡胶或合成橡胶材料放在母型中加热、加压而成。模压橡胶凸版的优点是:一旦做成母型后,很容易生产橡胶复制版,版厚可以自由控制,还可以根据油墨承印物不同生产多种橡皮版,如聚异丁烯橡胶版。(14)特殊用途1.由于具备高粘度,防水性,抗撕裂性能,此原料在工业建筑方面也广泛应用。例如:防止地震的时候,此起的建筑物的剧烈摇摆,此原料,还用高速公路的高架桥降低震动性。2.保护膜用于涂在汽车顶部的保护膜,防止酸雨;聚异丁烯和加入聚烯烃树脂的压敏胶一起使用,会进一肯增加防水性和后处理性能。3.红外光中空光纤感测:以聚异丁烯覆膜之中空导光纤、实心光纤探测器:以聚异丁烯为固相微萃覆膜层之ATR晶体。4.作为添加剂涂布于天然胶和合成胶表面,起防护作用5.改良硬质胶的机械强度6.处理废物、金属残渣、有毒淤泥、漏油7.回收塑料处理8.用于回收硫化橡胶的再生9.与其它高聚物混合,可制作-医学抽吸设备的无菌管及医学计量设备-浸渍管-汽车保护膜-装饰膜,如含纺织纤维的层压膜-家用薄膜-一次性注射器的密封-防滑食品/饲料/卡板包装膜-酸奶杯等的外包膜-化妆品包装-保特瓶帽之包装膜-防滑餐桌垫-吸尘器保护板食品及医药用途(15)口香糖聚异丁烯与石蜡、树脂混合,提高口香糖的品质;同时,使口香糖变得更柔软、更稳定,保持良好的疏水性,并具有优良的膜性能。(16)食品级粘接剂聚异丁烯能与各种交粘剂(包括压敏胶)混合后,主要起粘接与改性作用。聚异丁烯具有疏水性,与亲水性物质(CMC;果胶;凝胶)混合,保持低毒吸收和高温稳定性,调整硬度,抗菌性。(17)食品包装物聚异丁烯与各种石蜡和高分子的聚合物混合,用作包装膜的释放剂,例如:聚异丁烯与石蜡、聚合物用于乳酪的包装膜。聚异丁烯能提高产品的低温稳定性,改进抗水性。(18)食品级热熔胶聚异丁烯具有增塑作用,用于热塑性橡胶(TPR)等。(19)食品添加剂胶姆糖基质材料,又称胶基,是一类高分子化合物,经加入聚异丁烯后,具有适当的粘弹性,耐咀嚼性、光滑性等,用于制造胶姆糖。(20)在微囊技术中的应用由于乙基纤维从有机溶剂中的凝聚相分离技术不需要复杂的操作和昂贵的生产设备,因而人们在这方面有许多研究,一些以乙基纤维素制备的微囊已经上市。SueinssonSJ等以凝聚相分离法使用EC和聚异丁烯制备了萘普生微囊。他们将聚异丁烯加热溶于300ml环已烷,在400或700rpm转速搅拌下向该热溶液(50℃)加入EC,使萘普生分散于成囊聚合物中,并保持温度80℃,1小时,然后在1小时的时间中逐渐降低温度至45℃,之后迅速降低温度至20℃,使微囊固化,微囊沉淀析出,倾去上清液,以200ml冷环已烷冲洗三次,真空过滤,50℃干燥30分钟,电镜下观察到制备的微囊为多核结构,形状不规则,微囊内部结构松散,可以看到EC包着的萘普生晶体。增加聚异丁烯浓度,微囊表面逐渐光洁,但形状不规则,此时药物的溶出速率逐渐增大。(21)贮库型(膜控制型)控释制剂以微孔聚丙烯为控释膜、聚异丁烯为药库的东莨菪碱透皮贴膏(22)透皮给药储库型透皮给药系统其胶粘层多为聚异丁烯压敏胶。骨架型透皮给药系统可供选择的胶粘剂聚异丁烯类为较主要的一种。骨架型透皮给药系统的制备:以雌三醇透皮给药系统为例,制备以硅橡胶为骨架的“微小储库控制药物释放系统”。精密称取雌二醇置于研钵中,加入适量的PEG400溶液(需要时可加入少量透皮吸收剂),研均后加入一定量的聚二甲硅氧烷,研磨成稠胶伏,置真空干燥箱中减压处理20分钟,去除胶内所含的空气,最后加入交联剂聚异丁烯压敏胶及催化剂乙醇,研匀后倒入不锈钢模具内,加压定型。(23)防滑食品/饲料/卡板包装膜LLDPE,2-5%,铸型/吹塑薄膜,降低气体透过率/抗结露性能
『叁』 硬脂酸镉含量检测方法
硬脂酸镉为白色细微粉末,不溶于水,溶于热乙醇、苯和松节油,在有机溶剂中加热溶解而冷却后成为胶状物,遇强酸分解成硬脂酸和相应的盐,有吸湿性。高毒,对呼吸道有刺激作用并可引起肺水肿;可破坏人体骨骼,引起骨质松软,周身骨骼疼痛等。用作聚氯乙烯等塑料的耐光透明稳定剂、高级橡胶制品和薄膜的光滑剂和透明软化剂。
硬脂酸镉含量检测方法:
1、原子吸收光谱法
可分为火焰原子吸收光谱法、石墨炉原子吸收光谱法和冷原子吸收光谱法。
1.1、火焰原子吸收光谱法(FAAS)
因该法分析精度好等优点而得到广泛应用。利用光纤压力自控微波密闭消解技术,采用正交试验,优选出最佳消解体系,方法检出限为0.10ng/ml,RSD%为0.52%~1.74%,加标回收率为97.0%~108.0%,用于食品分析中镉含量的测定,结果十分满意。改性花生壳固相萃取-原子吸收光谱法测定食品样品中痕量镉的方法,在优化的实验条件下,可成功应用于茶叶等食品样品中镉含量的测定,或加入KI-MIBK萃取食品中痕量铅和镉,导入FAAS测定,解决了食品基体物质干扰铅、镉测定的问题。采用配有螯合树脂微型柱的流动注射预富集原子吸收光谱联用技术,建立了镉的流动注射离子交换预富集原子吸收光谱测定法。巯基棉富集分离-火焰原子吸收法测定皮蛋中镉含量的分析方法,方法简便,选择性好。
1.2、石墨炉原子吸收光谱法(GFAAS)
GFAAS测定镉的绝对灵敏度比火焰法高3~4个数量级,可分析固体或气体试样。因此,该法在食品安全卫生控制方面得到了迅速的推广应用。
通过采用氢氧化镁共沉淀法对高盐食品中的铅和镉进行测定。也可采用GFAAS测食品中镉含量,方法检出限、批内相对标准偏差、批间相对标准偏差和回收率分别为0.014μg/L、2.09%~3.33%、5.79%和92.0%~106%。直接用固体进行测定食品包装纸中铅、镉的方法,与湿法消解方法相比较,该方法简便、快速,同时可避免样品的稀释以及试剂的交叉污染带来的分析误差。基体改进剂的选择对GFAAS有很大的影响,所以是一个研究热点,采用抗坏血酸和酒石酸作为基体改进剂,消除了GFAAS测定补钙食品中镉的基体干扰;用钯盐作为基体改进剂时测定效果较好;以NH4H2PO4和Mg(NO3)2作混合基体改进剂,消除了基体干扰。
2、氢化物发生-原子荧光光谱法(HG-AFS)
该法是在样品消解后加入能产生新生态氢的还原剂,将试样溶液中的待测元素还原为挥发性的共价氢化物,由氩气带入石英原子化器中进行原子荧光测定。
用硼氢化钾-盐酸-铁氰化钾-盐酸羟胺发生挥发性镉蒸气的反应体系,并将发生器表面及玻璃导管进行硅烷化,提高了测定的灵敏度和精密度,或建立了HG-AFS同时测定食品中的镉和锡的方法。经前人研究证明在硫脲和抗坏血酸、硼氢化钾等存在下,用HG-AFS可一次性实现食品中镉、汞的同时测定,准确度、精密度及检出限均能够满足食品中镉、汞测定要求,且方法简单。采用HG-AFS测定海水及海产食品中的镉含量,结果表明,方法检出限为0.0038μg/g,加标回收率为97.0%~103%。用HG-AFS同时测定样品的镉和汞,镉的相对标准偏差、线性相关系数、检出限、样品加标回收率分别为2.4%~5.7%、0.9998、0.0031μg/g、95.0%~102.0%。加入二硫腙-四氯化碳作为掩蔽剂,消除基体中铜的干扰,应用于鱼肉类食品中镉含量的测定,效果很好。二硫腙-四氯化碳-硫脲和钴溶液作为掩蔽剂可准确有效地测定蔬菜中的微量镉。
3、分光光度法
分光光度法是利用显色剂与镉离子形成稳定的显色络合物,然后用分光光度计测定。此方法具有简便、仪器简单等优点。
为了同时测定铅和镉,建立了以电荷耦合器件作为阵列光信号探测器,小型多色仪和专用微机组成的分光光度装置,研究了卟啉与铅和镉显色反应的最佳条件,测定了合成试样、陶瓷等浸泡液中铅和镉的含量;通过对新试剂2,6-二甲苯基重氮氨基偶氮苯与镉显色反应研究,
建立了检测食品中镉含量的新方法。通过分析比较FAAS、KI-MIBK螯合萃取-FAAS和镉-碘化钾-罗丹明B分光光度法三种方法,从灵敏度、检出限、仪器价格等方面进行比较,得出采用镉-碘化钾-罗丹明B分光光度法测定食品中镉含量的方法最为简单易行,操作快速、灵敏度高、选择性好。
4、高效液相色谱法
近几年来,高效液相色谱法在无机分析中的应用研究取得了迅速发展,痕量金属离子与有机试剂形成稳定的有色衍生物,用高效液相色谱分离,克服了光度分析选择性差的缺点,可实现多元素同时测定。尹江伟等采用高效液相色谱法可同时检测食品中锌、铜、铅和镉。
5、电感耦合高频等离子体发射光谱仪(ICP-AES)
用ICP-AES可有效测定污泥中铜、镉等元素的含量;用ICP-AES法直接测定奥沙利铂中微量银、镉等,对试样处理方法等多方面进行了研究;采用ICP-AES测定了淀粉等的铅、镉等含量,经实验证明了ICP-AES可准确测定可迁移性镉的浓度。
6、电化学方法
目前镉测定中主要的电化学方法有溶出伏安法和极谱法。
溶出伏安法是在适当的条件下电解被测物质一定时间,然后改变电极电位,使富集在该电极上的物质重新溶出,根据溶出过程中得到的伏安曲线来进行定量分析。罗江等应用该法测定了饲料级硫酸铜中的微量铅和镉,结果满意。以强碱型阴离子交换树脂为吸附剂,对铅、镉、锌进行静态阴离子交换分离富集,提高了测定灵敏度。将银汞膜电极阳极溶出伏安法与88笔录式极谱仪联用,测定食品中铅、镉含量,其灵敏度高、重现性好;阳极溶出伏安法同时测定食醋样品的铜、铅、镉3种元素;采用阳极溶出伏安法有效测定罐头食品中镉等元素。
极谱法是利用极谱仪来捕捉待测物质在特定条件下产生的波,从而对待测物质的含量进行计算的一种方法。饮料中铅、镉的示波极谱法测定,对底液条件等进行了试验。Cd2+与氯化钾-酒石酸钠-三乙醇胺-明胶体系的二次导数极波,证明方法准确度高,简便可行。示波极谱法测定食品中的镉等微量元素,镉的检出限为0.005mg/kg。
7、其它检测方法
用毛细管区带电泳法准确有效地测定了奶粉中的镉、铅、铜;王民通过观察试纸显色法实现了快速检测食品中镉含量的要求。
8、五种主要检测方法的比较
火焰原子吸收法操作简单、分析速度快、测定高浓度元素时干扰小、信号稳定;石墨炉原子吸收法灵敏、准确、选择性好,但基体干扰严重,不适合多种元素分析;电感耦合等离子体质谱法灵敏度高,选择性好,能同时分析多种元素,但价格昂贵,易受污染;紫外分光光度法简便、快速、灵敏度高、仪器简单、价格低廉、容易普及,但干扰因素较多,选择性较差。阳极溶出伏安法灵敏度高、分辨率好,仪器价格低廉,可同时测定几种元素。
『肆』 水中溶解氧值
溶解氧(Dissolved Oxygen)是指溶解于水中分子状态的氧,即水中的O2,用DO表示。溶解氧是水生生物生存不可缺少的条件。溶解氧的一个来源是水中溶解氧未饱和时,大气中的氧气向水体渗入;另一个来源是水中植物通过光合作用释放出的氧。溶解氧随着温度、气压、盐分的变化而变化,一般说来,温度越高,溶解的盐分越大,水中的溶解氧越低;气压越高,水中的溶解氧越高。溶解氧除了被通常水中硫化物、亚硝酸根、亚铁离子等还原性物质所消耗外,也被水中微生物的呼吸作用以及水中有机物质被好氧微生物的氧化分解所消耗。所以说溶解氧是水体的资本,是水体自净能力的表示。天然水中溶解氧近于饱和值(9ppm),藻类繁殖旺盛时,溶解氧含量下降。水体受有机物及还原性物质污染可使溶解氧降低,对于水产养殖业来说,水体溶解氧对水中生物如鱼类的生存有着至关重要的影响,当溶解氧低于4mg/L时,就会引起鱼类窒息死亡,对于人类来说,健康的饮用水中溶解氧含量不得小于6mg/L。当溶解氧(DO)消耗速率大于氧气向水体中溶入的速率时,溶解氧的含量可趋近于0,此时厌氧菌得以繁殖,使水体恶化,所以溶解氧大小能够反映出水体受到的污染,特别是有机物污染的程度,它是水体污染程度的重要指标,也是衡量水质的综合指标[2]。因此,水体溶解氧含量的测量,对于环境监测以及水产养殖业的发展都具有重要意义。
1.水体溶解氧的各种检测方法及原理
1.1 碘量法(GB7489-87)(Iodometric)
碘量法(等效于国际标准ISO 5813-1983)是测定水中溶解氧的基准方法,使用化学检测方法,测量准确度高,是最早用于检测溶解氧的方法。其原理是在水样中加入硫酸锰和碱性碘化钾,生成氢氧化锰沉淀。此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰:
4MnSO4+8NaOH = 4Mn(OH)2↓+4Na2SO4 (1)
2Mn(OH)2+O2 = 2H2MnO3↓ (2)
2H2MnO3+2Mn(OH)3 = 2MnMnO3↓+4H2O (3)
加入浓硫酸使已化合的溶解氧(以MnMnO3的形式存在)与溶液中所加入的碘化钾发生反应而析出碘:
4KI+2H2SO4 = 4HI+2K2SO4 (4)
2MnMnO3+4H2SO4+HI = 4MnSO4+2I2+6H2O (5)
再以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,来计算溶解氧的含量[3],化学方程式为:
2Na2S2O3+I2 = Na2S4O6+4NaI (6)
设V为Na2S2O3溶液的用量(mL),M为Na2S2O3的浓度(mol/L),a为滴定时所取水样体积(mL),DO可按下式计算[2]:
DO(mol/L)= (7)
在没有干扰的情况下,此方法适用于各种溶解氧浓度大于0.2mg/L和小于氧的饱和度两倍(约20mg/L)的水样。当水中可能含有亚硝酸盐、铁离子、游离氯时,可能会对测定产生干扰,此时应采用碘量法的修正法。具体作法是在加硫酸锰和碱性碘化钾溶液固定水样的时候,加入NaN3溶液,或配成碱性碘化钾-叠氮化钠溶液加于水样中,Fe3+较高时,加入KF络合掩敝。碘量法适用于水源水,地面水等清洁水。碘量法是一种传统的溶解氧测量方法,测量准确度高且准确性好,其测量不确定度为0.19mg/L[4]。但该法是一种纯化学检测方法,耗时长,程序繁琐,无法满足在线测量的要求[5]。同时易氧化的有机物,如丹宁酸、腐植酸和木质素等会对测定产生干扰。可氧化的硫的化合物,如硫化物硫脲,也如同易于消耗氧的呼吸系统那样产生干扰。当含有这类物质时,宜采用电化学探头法[6],包括下面将要介绍的电流测定法以及电导测定法等。
1.2 电流测定法(Clark溶氧电极)
当需要测量受污染的地面水和工业废水时必须用修正的碘量法或电流测定法。电流测定法根据分子氧透过薄膜的扩散速率来测定水中溶解氧(DO)的含量。溶氧电极的薄膜只能透过气体,透过气体中的氧气扩散到电解液中,立即在阴极(正极)上发生还原反应:
O2+2H2O+4e à 4OH- (8)
在阳极(负极),如银-氯化银电极上发生氧化反应:
4Ag+4Cl- à 4AgCl+4e (9)
(8)式和(9)式产生的电流与氧气的浓度成正比,通过测定此电流就可以得到溶解氧(DO)的浓度。
电流测定法的测量速度比碘量法要快,操作简便,干扰少(不受水样色度、浊度及化学滴定法中干扰物质的影响),而且能够现场自动连续检测,但是由于它的透氧膜和电极比较容易老化,当水样中含藻类、硫化物、碳酸盐、油类等物质时,会使透氧膜堵塞或损坏,需要注意保护和及时更换,又由于它是依靠电极本身在氧的作用下发生氧化还原反应来测定氧浓度的特性,测定过程中需要消耗氧气,所以在测量过程中样品要不停地搅拌,一般速度要求至少为0.3m/s,且需要定期更换电解液,致使它的测量精度和响应时间都受到扩散因素的限制。目前市场上的仪器大多都是属于Clark电极类型,每隔一段时间要活化,透氧膜也要经常更换。张葭冬[7]对膜电极的精密度作了研究,用膜电极法测量溶解氧的标准偏差为0.41mg/L,变异系数5.37%,碘量法测量溶解氧的标准偏差为0.3mg/L,变异系数为4.81%。同碘量法做对比实验时,每个样品测定值绝对误差小于0.21mg/L,相对误差不超过2.77%,两种方法相对误差在-2.52%~2.77%之间。代表产品有美国YSI公司的系列便携式溶解氧测量仪,如YSI58型溶解氧测量仪,该仪器可高质量地完成实验室和野外环境的测试工件,操作简便携带方便。测量范围为0~20mg/L,精度为±0.03mg/L。
1.3 荧光猝灭法
荧光猝灭法的测定是基于氧分子对荧光物质的猝灭效应原理,根据试样溶液所发生的荧光的强度来测定试样溶液中荧光物质的含量。通过利用光纤传感器来实现光信号的传输,由于光纤传感器具有体积小、重量轻、电绝缘性好、无电火花、安全、抗电磁干扰、灵敏度高、便于利用现有光通信技术组成遥测网络等优点,对传统的传感器能起到扩展、提高的作用,在很多情况下能完成传统的传感器很难甚至不能完成的任务,因此非常适合于荧光的传输与检测。从80年代初起,人们已开始了探索应用于氧探头的荧光指示剂的工作。早期曾采用四烷基氨基乙烯为化学发光剂,但由于其在应用中对氧气的响应在12小时内逐渐衰减而很快被淘汰。芘、芘丁酸、氟蒽等是一类很好的氧指示剂〔8〕,如1984年Wolfbeis等报告了一种对氧气快速响应的荧光传感器,就是以芘丁酸为指示剂,固定于多孔玻璃。这种传感器的优点是响应速度快(可低于50ms),并有很好的稳定性。1989年,Philip等〔9〕将香豆素1、香豆素103、香豆素153三种荧光指示剂分别固定于有机高聚物XAD-4、XAD-8及硅胶三种支持基体中进行实验。从灵敏度、发射强度和稳定性几个方面进行比较,得出了香豆素102固定于XAD-4支持基体中是作为一种灵敏可逆的光纤氧传感器的中介的最佳选择的结论。使用这种荧光指示剂的光纤氧传感器的应用范围相当广泛。
后来过渡金属(Ru、Os、Re、Rh和Ir)的有机化合物以其特殊的性能受到关注,对光和热以及强酸强碱或有机溶剂等都非常稳定。一般选用金属钌铬合物作为荧光指示剂即分子探针。金属钌铬合物的荧光强度与氧分压存在一一对应的关系,激发态寿命长,不耗氧,自身的化学成份很稳定,在水中基本不溶解。钌铬合物的基态至激发态的金属配体电荷转移(MLCT)过程中,激发态的性质与配体结构有密切关系,通常随着配体共轭体系的增大,荧光强度增强,荧光寿命增大,例如在荧光指示剂中把苯基插入到钌的配位空轨道上,从而增强络合物的刚性,在这样的刚性结构介质中,钌的荧光寿命延长,而氧分子与钌络合物分子之间的碰撞猝灭机率提高,从而可增强氧传感膜对氧的灵敏度。目前的研究中,钌化合物的配体一般局限于2,2’-联吡啶、1,10-邻菲洛啉及其衍生物。Brian[10]在实验中比较了在不同pH值介质条件下制得的Ru(bpy)2+3与Ru(ph2phen)2+3两种不同涂料的传感器性能,结果显示在pH=7时Ru(ph2phen)2+3显示了更高的灵敏度。为延长敏感膜在水溶液中的工作寿命,较长时间保持其灵敏性,吕太平〔11〕等合成Ru(Ⅱ)与4,7-二苯基-1,10-邻菲洛啉的亲脂性衍生物生成的新的荧光试剂配合物Ru(I)[4,7-双(4’-丙苯基)-1,10-邻菲洛啉]2(ClO4)2和Ru(Ⅱ)[4,7-双(4’-庚苯基)-1,10-邻菲洛啉]3(ClO4)2。Kerry[12]等合成Ru(Ⅱ)[5-丙烯酰胺基-1,10-邻菲洛啉]3(ClO4)2。实验均发现随着配体碳链的增长,荧光试剂的憎水性增大,流失现象减少,可延长膜的使用寿命。Ignacy[13]等研究还发现极化后的[Ru(dpp)3Cl2]氧传感膜对氧具有更高的灵敏度。吸附在硅胶60上的钌(Ⅱ)络合物在蓝光的激发下发出既强烈又稳定的粉红色荧光,该荧光可以有效地被分子氧淬灭。
其检测原理是根据Stern-Vlomer的猝灭方程[14]:F0/F=1+Ksv[Q],其中F0为无氧水的荧光强度,F为待检测水样的荧光强度,Ksv为方程常数,[Q]为溶解氧浓度,根据实际测得的荧光强度F0、F及已知的Ksv,可计算出溶解氧的浓度[Q]。
实验证明这种检测方法克服了碘量法和电流测定法的不足,具有很好的光化学稳定性、重现性,无延迟,精度高,寿命长,可对水中溶解氧进行实时在线监测。其测量范围一般为0~20mg/L,精度一般≤1%,响应时间≤60s。
1.4 其他检测方法
电导测定法:用导电的金属铊或其他化合物与水中溶解氧(DO)反应生成能导电的铊离子。通过测定水样中电导率的增量,就能求得溶解氧(DO)的浓度。实验表明,每增加0.035S/cm的电导率相当于1mg/L的溶解氧(DO)。此方法是测定溶解氧(DO)最灵敏的方法之一,可连续监测。
阳极溶出伏安法:同样利用金属铊与溶解氧(DO)定量反应生成亚铊离子:
4Tl+O2+2H2Oà4Tl++4OH- (10)
然后用溶出法测定Tl+离子的浓度,从而间接求得溶解氧(DO)的浓度。使用该方法取样量少,灵敏度高,而且受温度影响不大。
2.国内外在水体溶解氧检测领域研究的现状
我国目前对水质检验的常规程序是取样后拿到实验室检验分析,中间的工作环节复杂,导致检测时间长,不能及时得到水质情况。国内目前一些单位和研究机构已经开发研制出一些小型溶解氧检测仪,一般都基于电流测定法,如上海雷磁仪器厂生产的JPSJ-605型溶解氧分析仪,北京北斗星工业化学研究所研制的H-BD5W手持式水质通用测试仪等,其速度方面同国外同类仪器还有一定的差距;国内对荧光溶解氧传感器也有一些研究[5][15],技术已经达到国外平均水平,但研究实现商品化的较少。国外一般采用新型的基于荧光淬灭效应的溶解氧测量仪[16],代表产品有瑞士DMP公司的MICROXI型的溶解氧测量仪,美国OXYMON氧气测量系统等等,测量精确,快速,并可以远程测量等。总的来说,目前市场上大多数商品化溶解氧测量仪都是基于Clark溶氧电极的,基于荧光淬灭法的光纤溶解氧传感器较少。
我国环境监测、监控技术在环境领域的应用等方面的研究与发达国家相比还存在显著差距。目前国内在水质监测系统上还没有自己开发的完整的设备,大多数采用国外的设备和技术,如ECOTECH公司的WQMS(水质监测系统),美国SIGMA900系列水质采样器等等,但是国外的水质检测设备和系统大多数价格高,体积大,有的不完全符合中国的环境条件。据海关统计,2000年我国进口各类仪器仪表总额70亿美元,接近我国仪器仪表工业总产值的50%。全国每年用于仪器仪表进口的费用大大超过用于购买国产仪器的费用,价格昂贵、采购周期长以及各种配件难以获得等原因,严重地约束了我国科学技术的发展[1]。因此我国急需研究开发自行生产的环境水质自动监测仪器。
3.小结
目前国际上发展的主流是基于荧光淬灭原理的光纤溶解氧传感器,仪器的性能一般为:重复性误差±0.3㎎/L,零点漂移和量程漂移±0.3㎎/L,响应时间(T90)≤2min,温度补偿精度±0.3㎎/L,MTBF≥720h/次。根据上述荧光淬灭的特性,拟使用如下方法实现溶解氧检测仪:光源发出的光信号经滤光片送到有荧光指示剂的区域,水中溶解氧与荧光指示剂相作用,引起光的强度、波长、频率、相位、偏振态等光学特征发生变化后送到光探测器和信号处理装置,得到溶解氧浓度的信息。为了防止污染物、水体生物的腐蚀、干扰,仪器的抗干扰能力是关键。应该从传感膜的化学稳定性,仪器的防腐蚀性能,电路的工作稳定性方面多加以研究。
鉴于基于荧光淬灭法测量仪的光纤传感器具有较高的测量精度和较强的抗干扰能力,以及较好的重复性和稳定性,可以用于农业中水产养殖业水质的测量以及各种农业用水污染程度的测量,因此对此种传感器的研究具有重要的实际应用价值和商品化价值。
参考资料:http://www.samsco.com.cn/info/46045.htm
『伍』 溶脂减肥的溶脂手术的优点
1、安全,损伤小,不见血:很多女孩是见血晕,溶脂就让你不再有这种担忧!溶脂肪是以1至2毫米光纤发射激光进入脂肪层,不会损伤皮肤及血管及神经系统,肉眼几乎观察不到出血。
2、数字定位,这项技术不但可以应用于腹部、腰部、腿部、臀部,更加特别适应于手臂、脸部、颈部这样脂肪层较薄却极难通过其他方式减脂的细小局部精细部位。也就是说,如果你正在为你的胖脸蛋儿烦恼,多余的油汁在人体正常的代谢下就可以消失的无影无踪。
3、纯脂率90%:溶脂有着高达90%的纯脂率,这让你能一次性地溶解更多脂肪,保证达到理想的吸脂效果。溶脂其独特脂肪液对脂肪进行全方位的液化,在溶解脂肪的同时,把溶解的脂肪溶出体外,明显增加了纯脂肪的排出量。效果明显优于传统吸脂量。特别对手臂、脸部、颈部等部位,效果立竿见影。
4、平滑紧致:与传统抽脂手术相比,溶脂是通过激光能量一个部位一个部位均匀地扫过去,术区与非手术区平缓过度,避免凹凸不平,皮肤光滑、紧缩不松弛。
『陆』 自动溶出仪哪个公司的好
自动溶出仪可分为自动取样溶出仪和在线测定自动溶出仪。其中自动取样溶出仪可选择的范围有5家产品,分别是美国“汉森”、美国“VK”(最早是VK公司产品,先被瓦里安收购,现被安捷伦收购,现在是安捷伦公司的产品),瑞士“沙特士”,德国“艾维卡”,中国的“天大天发”等自动溶出仪。可以从几个方面比较一下。1)机械精度,精度是溶出仪的基础,4家进口的设备都没问题,都有3Q认证服务;国产的差很多,能否通过国际认证还不好说。2)取样精度:汉森、艾维卡、天大最新型都是柱塞取样,比VK、沙特士的蠕动泵取样精度要高。3)操控性方面:汉森、艾维卡、沙特士较好,VK设计得太复杂,容易出现问题,天大由于设计简单、中文界面,也很好操控。4)功能的全面性:VK最好,天大天发最差。VK有很多智能化的功能,给工作带来了许多方便,同时也出现了前面的操控性的问题,还有由于设计复杂,很多功能不会用。5)性价比,单纯考虑价格,天大天发最好,如果仪器是用来做国际注册的产品,还是用进口的。在线测定自动溶出仪又分为光纤在线测定、自动紫外取样测定和自动HPLC取样测定3种。这3种仪器国内使用的不多,很多买来后由于使用不便又拆成两个仪器分别使用。如果对简单的自动取样溶出仪评价,最好的还是美国汉森、艾维卡,只是艾维卡市场上太少,不知配件服务是否能跟上,性价比是否合理。
『柒』 水中溶氧检测
摘 要:本文综述了水体溶解氧的各种检测方法及原理,诸如碘量法、电流测定法(Clark溶氧电极)、电导测定法、荧光淬灭法等,比较各种方法的优缺点,对荧光淬灭法的应用前景进行了初步探讨。
关键词:溶解氧、荧光淬灭、环境监测
0.引言
随着当今世界工业、农业的迅猛发展,大量的工业废水、农田排水向江河湖海排放,同时,我国城市生活污水大约有80%未经处理直接排放,小城镇及广大农村生活污水大多处于无序排放状态[1],使得许多地方的水质日益恶化,水污染和水资源短缺日益严重,所以迫切需要对污水进行及时监控和有效处理。其中,水中溶解氧含量是进行水质监测时的一项重要指标。
溶解氧(Dissolved Oxygen)是指溶解于水中分子状态的氧,即水中的O2,用DO表示。溶解氧是水生生物生存不可缺少的条件。溶解氧的一个来源是水中溶解氧未饱和时,大气中的氧气向水体渗入;另一个来源是水中植物通过光合作用释放出的氧。溶解氧随着温度、气压、盐分的变化而变化,一般说来,温度越高,溶解的盐分越大,水中的溶解氧越低;气压越高,水中的溶解氧越高。溶解氧除了被通常水中硫化物、亚硝酸根、亚铁离子等还原性物质所消耗外,也被水中微生物的呼吸作用以及水中有机物质被好氧微生物的氧化分解所消耗。所以说溶解氧是水体的资本,是水体自净能力的表示。天然水中溶解氧近于饱和值(9ppm),藻类繁殖旺盛时,溶解氧含量下降。水体受有机物及还原性物质污染可使溶解氧降低,对于水产养殖业来说,水体溶解氧对水中生物如鱼类的生存有着至关重要的影响,当溶解氧低于4mg/L时,就会引起鱼类窒息死亡,对于人类来说,健康的饮用水中溶解氧含量不得小于6mg/L。当溶解氧(DO)消耗速率大于氧气向水体中溶入的速率时,溶解氧的含量可趋近于0,此时厌氧菌得以繁殖,使水体恶化,所以溶解氧大小能够反映出水体受到的污染,特别是有机物污染的程度,它是水体污染程度的重要指标,也是衡量水质的综合指标[2]。因此,水体溶解氧含量的测量,对于环境监测以及水产养殖业的发展都具有重要意义。
1.水体溶解氧的各种检测方法及原理
1.1 碘量法(GB7489-87)(Iodometric)
碘量法(等效于国际标准ISO 5813-1983)是测定水中溶解氧的基准方法,使用化学检测方法,测量准确度高,是最早用于检测溶解氧的方法。其原理是在水样中加入硫酸锰和碱性碘化钾,生成氢氧化锰沉淀。此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰:
4MnSO4+8NaOH = 4Mn(OH)2↓+4Na2SO4 (1)
2Mn(OH)2+O2 = 2H2MnO3↓ (2)
2H2MnO3+2Mn(OH)3 = 2MnMnO3↓+4H2O (3)
加入浓硫酸使已化合的溶解氧(以MnMnO3的形式存在)与溶液中所加入的碘化钾发生反应而析出碘:
4KI+2H2SO4 = 4HI+2K2SO4 (4)
2MnMnO3+4H2SO4+HI = 4MnSO4+2I2+6H2O (5)
再以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,来计算溶解氧的含量[3],化学方程式为:
2Na2S2O3+I2 = Na2S4O6+4NaI (6)
设V为Na2S2O3溶液的用量(mL),M为Na2S2O3的浓度(mol/L),a为滴定时所取水样体积(mL),DO可按下式计算[2]:
DO(mol/L)= (7)
在没有干扰的情况下,此方法适用于各种溶解氧浓度大于0.2mg/L和小于氧的饱和度两倍(约20mg/L)的水样。当水中可能含有亚硝酸盐、铁离子、游离氯时,可能会对测定产生干扰,此时应采用碘量法的修正法。具体作法是在加硫酸锰和碱性碘化钾溶液固定水样的时候,加入NaN3溶液,或配成碱性碘化钾-叠氮化钠溶液加于水样中,Fe3+较高时,加入KF络合掩敝。碘量法适用于水源水,地面水等清洁水。碘量法是一种传统的溶解氧测量方法,测量准确度高且准确性好,其测量不确定度为0.19mg/L[4]。但该法是一种纯化学检测方法,耗时长,程序繁琐,无法满足在线测量的要求[5]。同时易氧化的有机物,如丹宁酸、腐植酸和木质素等会对测定产生干扰。可氧化的硫的化合物,如硫化物硫脲,也如同易于消耗氧的呼吸系统那样产生干扰。当含有这类物质时,宜采用电化学探头法[6],包括下面将要介绍的电流测定法以及电导测定法等。
1.2 电流测定法(Clark溶氧电极)
当需要测量受污染的地面水和工业废水时必须用修正的碘量法或电流测定法。电流测定法根据分子氧透过薄膜的扩散速率来测定水中溶解氧(DO)的含量。溶氧电极的薄膜只能透过气体,透过气体中的氧气扩散到电解液中,立即在阴极(正极)上发生还原反应:
O2+2H2O+4e à 4OH- (8)
在阳极(负极),如银-氯化银电极上发生氧化反应:
4Ag+4Cl- à 4AgCl+4e (9)
(8)式和(9)式产生的电流与氧气的浓度成正比,通过测定此电流就可以得到溶解氧(DO)的浓度。
电流测定法的测量速度比碘量法要快,操作简便,干扰少(不受水样色度、浊度及化学滴定法中干扰物质的影响),而且能够现场自动连续检测,但是由于它的透氧膜和电极比较容易老化,当水样中含藻类、硫化物、碳酸盐、油类等物质时,会使透氧膜堵塞或损坏,需要注意保护和及时更换,又由于它是依靠电极本身在氧的作用下发生氧化还原反应来测定氧浓度的特性,测定过程中需要消耗氧气,所以在测量过程中样品要不停地搅拌,一般速度要求至少为0.3m/s,且需要定期更换电解液,致使它的测量精度和响应时间都受到扩散因素的限制。目前市场上的仪器大多都是属于Clark电极类型,每隔一段时间要活化,透氧膜也要经常更换。张葭冬[7]对膜电极的精密度作了研究,用膜电极法测量溶解氧的标准偏差为0.41mg/L,变异系数5.37%,碘量法测量溶解氧的标准偏差为0.3mg/L,变异系数为4.81%。同碘量法做对比实验时,每个样品测定值绝对误差小于0.21mg/L,相对误差不超过2.77%,两种方法相对误差在-2.52%~2.77%之间。代表产品有美国YSI公司的系列便携式溶解氧测量仪,如YSI58型溶解氧测量仪,该仪器可高质量地完成实验室和野外环境的测试工件,操作简便携带方便。测量范围为0~20mg/L,精度为±0.03mg/L。
1.3 荧光猝灭法
荧光猝灭法的测定是基于氧分子对荧光物质的猝灭效应原理,根据试样溶液所发生的荧光的强度来测定试样溶液中荧光物质的含量。通过利用光纤传感器来实现光信号的传输,由于光纤传感器具有体积小、重量轻、电绝缘性好、无电火花、安全、抗电磁干扰、灵敏度高、便于利用现有光通信技术组成遥测网络等优点,对传统的传感器能起到扩展、提高的作用,在很多情况下能完成传统的传感器很难甚至不能完成的任务,因此非常适合于荧光的传输与检测。从80年代初起,人们已开始了探索应用于氧探头的荧光指示剂的工作。早期曾采用四烷基氨基乙烯为化学发光剂,但由于其在应用中对氧气的响应在12小时内逐渐衰减而很快被淘汰。芘、芘丁酸、氟蒽等是一类很好的氧指示剂〔8〕,如1984年Wolfbeis等报告了一种对氧气快速响应的荧光传感器,就是以芘丁酸为指示剂,固定于多孔玻璃。这种传感器的优点是响应速度快(可低于50ms),并有很好的稳定性。1989年,Philip等〔9〕将香豆素1、香豆素103、香豆素153三种荧光指示剂分别固定于有机高聚物XAD-4、XAD-8及硅胶三种支持基体中进行实验。从灵敏度、发射强度和稳定性几个方面进行比较,得出了香豆素102固定于XAD-4支持基体中是作为一种灵敏可逆的光纤氧传感器的中介的最佳选择的结论。使用这种荧光指示剂的光纤氧传感器的应用范围相当广泛。
后来过渡金属(Ru、Os、Re、Rh和Ir)的有机化合物以其特殊的性能受到关注,对光和热以及强酸强碱或有机溶剂等都非常稳定。一般选用金属钌铬合物作为荧光指示剂即分子探针。金属钌铬合物的荧光强度与氧分压存在一一对应的关系,激发态寿命长,不耗氧,自身的化学成份很稳定,在水中基本不溶解。钌铬合物的基态至激发态的金属配体电荷转移(MLCT)过程中,激发态的性质与配体结构有密切关系,通常随着配体共轭体系的增大,荧光强度增强,荧光寿命增大,例如在荧光指示剂中把苯基插入到钌的配位空轨道上,从而增强络合物的刚性,在这样的刚性结构介质中,钌的荧光寿命延长,而氧分子与钌络合物分子之间的碰撞猝灭机率提高,从而可增强氧传感膜对氧的灵敏度。目前的研究中,钌化合物的配体一般局限于2,2’-联吡啶、1,10-邻菲洛啉及其衍生物。Brian[10]在实验中比较了在不同pH值介质条件下制得的Ru(bpy)2+3与Ru(ph2phen)2+3两种不同涂料的传感器性能,结果显示在pH=7时Ru(ph2phen)2+3显示了更高的灵敏度。为延长敏感膜在水溶液中的工作寿命,较长时间保持其灵敏性,吕太平〔11〕等合成Ru(Ⅱ)与4,7-二苯基-1,10-邻菲洛啉的亲脂性衍生物生成的新的荧光试剂配合物Ru(I)[4,7-双(4’-丙苯基)-1,10-邻菲洛啉]2(ClO4)2和Ru(Ⅱ)[4,7-双(4’-庚苯基)-1,10-邻菲洛啉]3(ClO4)2。Kerry[12]等合成Ru(Ⅱ)[5-丙烯酰胺基-1,10-邻菲洛啉]3(ClO4)2。实验均发现随着配体碳链的增长,荧光试剂的憎水性增大,流失现象减少,可延长膜的使用寿命。Ignacy[13]等研究还发现极化后的[Ru(dpp)3Cl2]氧传感膜对氧具有更高的灵敏度。吸附在硅胶60上的钌(Ⅱ)络合物在蓝光的激发下发出既强烈又稳定的粉红色荧光,该荧光可以有效地被分子氧淬灭。
其检测原理是根据Stern-Vlomer的猝灭方程[14]:F0/F=1+Ksv[Q],其中F0为无氧水的荧光强度,F为待检测水样的荧光强度,Ksv为方程常数,[Q]为溶解氧浓度,根据实际测得的荧光强度F0、F及已知的Ksv,可计算出溶解氧的浓度[Q]。
实验证明这种检测方法克服了碘量法和电流测定法的不足,具有很好的光化学稳定性、重现性,无延迟,精度高,寿命长,可对水中溶解氧进行实时在线监测。其测量范围一般为0~20mg/L,精度一般≤1%,响应时间≤60s。
1.4 其他检测方法
电导测定法:用导电的金属铊或其他化合物与水中溶解氧(DO)反应生成能导电的铊离子。通过测定水样中电导率的增量,就能求得溶解氧(DO)的浓度。实验表明,每增加0.035S/cm的电导率相当于1mg/L的溶解氧(DO)。此方法是测定溶解氧(DO)最灵敏的方法之一,可连续监测。
阳极溶出伏安法:同样利用金属铊与溶解氧(DO)定量反应生成亚铊离子:
4Tl+O2+2H2Oà4Tl++4OH- (10)
然后用溶出法测定Tl+离子的浓度,从而间接求得溶解氧(DO)的浓度。使用该方法取样量少,灵敏度高,而且受温度影响不大。
2.国内外在水体溶解氧检测领域研究的现状
我国目前对水质检验的常规程序是取样后拿到实验室检验分析,中间的工作环节复杂,导致检测时间长,不能及时得到水质情况。国内目前一些单位和研究机构已经开发研制出一些小型溶解氧检测仪,一般都基于电流测定法,如上海雷磁仪器厂生产的JPSJ-605型溶解氧分析仪,北京北斗星工业化学研究所研制的H-BD5W手持式水质通用测试仪等,其速度方面同国外同类仪器还有一定的差距;国内对荧光溶解氧传感器也有一些研究[5][15],技术已经达到国外平均水平,但研究实现商品化的较少。国外一般采用新型的基于荧光淬灭效应的溶解氧测量仪[16],代表产品有瑞士DMP公司的MICROXI型的溶解氧测量仪,美国OXYMON氧气测量系统等等,测量精确,快速,并可以远程测量等。总的来说,目前市场上大多数商品化溶解氧测量仪都是基于Clark溶氧电极的,基于荧光淬灭法的光纤溶解氧传感器较少。
我国环境监测、监控技术在环境领域的应用等方面的研究与发达国家相比还存在显著差距。目前国内在水质监测系统上还没有自己开发的完整的设备,大多数采用国外的设备和技术,如ECOTECH公司的WQMS(水质监测系统),美国SIGMA900系列水质采样器等等,但是国外的水质检测设备和系统大多数价格高,体积大,有的不完全符合中国的环境条件。据海关统计,2000年我国进口各类仪器仪表总额70亿美元,接近我国仪器仪表工业总产值的50%。全国每年用于仪器仪表进口的费用大大超过用于购买国产仪器的费用,价格昂贵、采购周期长以及各种配件难以获得等原因,严重地约束了我国科学技术的发展[1]。因此我国急需研究开发自行生产的环境水质自动监测仪器。
3.小结
目前国际上发展的主流是基于荧光淬灭原理的光纤溶解氧传感器,仪器的性能一般为:重复性误差±0.3㎎/L,零点漂移和量程漂移±0.3㎎/L,响应时间(T90)≤2min,温度补偿精度±0.3㎎/L,MTBF≥720h/次。根据上述荧光淬灭的特性,拟使用如下方法实现溶解氧检测仪:光源发出的光信号经滤光片送到有荧光指示剂的区域,水中溶解氧与荧光指示剂相作用,引起光的强度、波长、频率、相位、偏振态等光学特征发生变化后送到光探测器和信号处理装置,得到溶解氧浓度的信息。为了防止污染物、水体生物的腐蚀、干扰,仪器的抗干扰能力是关键。应该从传感膜的化学稳定性,仪器的防腐蚀性能,电路的工作稳定性方面多加以研究。
鉴于基于荧光淬灭法测量仪的光纤传感器具有较高的测量精度和较强的抗干扰能力,以及较好的重复性和稳定性,可以用于农业中水产养殖业水质的测量以及各种农业用水污染程度的测量,因此对此种传感器的研究具有重要的实际应用价值和商品化价值。
『捌』 dissolution test;dissolution testing是什么意思
dissolution test;dissolution testing
溶出度试验;溶出度试验
dissolution test
[医]溶出试验,溶散试验;
例句
1.Study on the method of dissolution test of norfloxacin Capsule
氟哌酸胶囊溶出度测定方法的试验
2.Study on dissolution test method of Silybin Solid Dispersion Capsules
水飞蓟宾卵磷脂分散体胶囊剂溶出度测定方法的研究
dissolution testing
[医]溶出(度)试验;
例句
1.with flow-injection analysis, the proposed CL system was applied to the automated dissolution testing of pipemidic acid tablet.
结合流动注射分析技术,这种化学发光体系已应用于吡哌酸药片的自动溶出实验。
2.OBJECTIVE To determine the dissolution rate of compound sulfamethoxazole tablets with the instrument of fiber-optic in situ dissolution testing ( FODT).
目的研究光纤药物溶出度实时测定(FODT)仪监测复方磺胺甲恶唑片的溶出度。
『玖』 影响固体制剂溶出速率的因素
溶出度检查
一、概况
早在几十年前就有人指出,药物在体内吸收速度常常由溶解的快慢而决定,固体制剂中的药物在被吸收前,必须经过崩解和溶解然后转为溶液的过程,如果药物不易从制剂中释放出来或药物的溶解速度极为缓慢,则该制剂中药物的吸收速度或程度就有可能存在问题,另一方面,某些药理作用剧烈,安全指数小,吸收迅速的药物如果溶出速度太快,可能产生明显的不良反应,维持药效的时间也将缩短,在这种情况下,制剂中药物的溶出速率应予以控制。
依靠崩解时限检查作为所有片剂、胶囊在体内吸收的评定标准显示然是不够完善的,因为药物溶解后通过崩解仪筛网粒径常在1.6-2.0mm之间,而药物需呈溶液状态才能被机体吸收,其粒子大小以A来计算,所以崩解仅仅是药物溶出的最初阶段,而后面的继续分散和溶解过程,崩解时限检查是无法控制的,且固体制剂的崩解还要受到处方设计,制剂制备,贮存过程及体内许多复杂因素的影响,所以崩解时限检查不能客观反映药物与赋形剂之间的关系和影响,而溶出度检查却包括了崩解及溶解过程,因此研究溶出度就有更重要的意义。
过去认为只有难溶性药物才有溶出度的问题,但近年来研究证明,易溶性药物也会因制剂的配方和工艺不同而致药物溶出度有很大差异,从而影响药物生物利用度和疗效,在USP中规定测定溶出度的制剂有相当数量是易溶性药物。
大多数口服固体制剂在给药后必须经吸收进入血液循环,达到一定血药浓度后方能奏效,从而药物从制剂内释放出并溶解于体液是被吸收的前提,这一过程在生物药剂学中称作溶出,而溶出的速度和程度称溶出度,从药品检验的角度上讲,溶出度系指药物从片剂或胶囊等固体制剂在规定的溶剂中溶出的速度和程度。
国外药典从70年代就相继收载了溶出检查法,我国在1985年版药典中正式收载了溶出度检查,这些年来,各国药典收载溶出度检查的品种呈上升趋势,药典规定溶出度检查是为了用药安全有效,起着评价固体制剂质量和疗效的作用。
二、与生物利用度的关系
溶出度是评价药物质量的一个内在指标,是一种模拟口服固定制剂在胃肠道中崩解和溶出的体外试验法,溶出度已经成为评价固体制剂生物利用度的体外方法,溶出度作为制剂质量控制的一种手段,其目的是使不同厂家生产的同一品种或同一厂家生产的不同批号的药品能达到一定程度上的生物等价,该试验能有效地区分同一种药物生物利用度的差异。
生物利用度是人或动物服药后通过血或尿中药物浓度的测定来反映药物制剂在体内可能被吸收利用的程度进而推断疗效,从理论上讲,药物的体内试验和临床研究才是评价制剂的最根本和最可靠的依据,这是因为药物最终是用于人体的,但因生物利用度实验工作量极大,经济上消费高,而从药物生产的质量控制观点来看,不可能都用费时、费钱、费精力的测生物利用度的方法对每个样品进行体内试验来筛选评定。只能借助于体外溶出度试验的方法来检验和控制产品质量,现在的药剂水平尚达不到溶出度试验结果与体内完全一致,而只能有一定相关性,溶出度虽非必然与体内生物利用度相关,但多数情况下是相关的,也有报导药物的溶出速率等于或低于药物在体内生物利用度相关,但多数情况下是相关的,也有报导药物的溶出速率等于或低于药物在体内的吸收速率时,溶出速率成为限速因素,此时药物的溶出与生物利用度二者方可出现一定的相关性,溶出试验被看作是介于生物等效性和药品质量控制二者之间一项较为有力的措施,它是以体外实验法代替动物实验的一种方法,溶出度与生物利用度显示密切相关,而溶出度的体外实验较生物利用度简单易行,作为一个质量控制的指标,仍不失为一个经济有效的手段,这也是各药典收载这一检验项目的意图之一。
从体外溶出度试验与体内吸收相关关系方面来寻找评价固体制剂的方法,只有选出一种较合适的体外溶出试验方法才有可能进一步求得体内外相关关系。溶出度与生物利用度时的相关性计算公式可参考有关文献。
三、应用与发展
溶出度的应用是比较广泛的,如检验上,执行法定标准,生产中,贯彻文明生产的要求,临床上,考察疗效及检验药品的稳定性,研究方面,新药的研制,处方筛选,工艺改进,等等。总之,溶出度检查能比较客观地反映固体制剂的内在质量,它已经发展成为制药工业必需的质量控制项目之一,是评价制剂和工艺的一种手段,也成为评价是否影响制剂活性成分的生物利用度和制剂均匀度的一种有效标准。
95年版药典收载了小杯法,用于小剂量固体制剂的溶出度检查,国外药典还收载有流池法,近来还有光纤化学传感器在位监测溶出度的指导。
四、溶出度仪的较正
溶出度试验结果在很大程度上取决于仪器性能是否符合要求,人员的操作是否规范、熟练,为了做到测定数据有良好的重现性,除要求仪器的各个部位及安装检查符合规定外,还要用校正片来校正仪器,USP规定用二种校正片,有人经实验证明二种校正片对实验条件的变化均产生不同程度的影响,崩解型校正片比非崩解型校正片溶出度结果变化更为明显,由于我国药典对校正过程未做具体要求,且仪器之间性能上有差异,加上操作者的熟练程度不一从而使得同一批号校正片在不同仪器上所测得的结果有很大差异,所以校正不是使仪器及操作正规化的唯一可靠手段,但由于目前还没有良好的方法校正仪器和操作技术,所以使用校正片目前仍是一种较适宜的方法。
五、计算
影响药物溶出度的因素是多方面的,简述如下:①仪器的性能及操作水平,如介质除气程度,液体温度,仪器震动情况,搅拌速度,取样点位置,过滤的快慢,药物在杯中或转蓝中的位置等等,②药物本身的因素,如溶解度,药物的表面积,药物的结构与晶型,③制剂方面的因素,如剂型,处方,辅料工艺,药物相互作用,表面活性剂制剂崩解或主药释放后,微粒细度及总面积大小等。
崩解度合格的同一制剂不同厂家的产品,药物溶出度与临床疗效却千差万别,除产品质量不稳定外,还与原、辅料,处方工艺,生产场所,人员素质,贮存不当有关。
改善溶出度主要依靠提高崩解度或释放度,但在现阶段,不能制备出具有高崩解特性的产品仍是口服固体制剂广泛存在的大难题。
药物制剂发展
制剂可分为四代,第一代为一般制剂或常规制剂,在崩解度试验水平,第二代一般为长效缓慢制剂或肠溶制剂,在溶出度试验水平,第三代为精密的控释制剂,药物输送系统,透皮吸收治疗系统,第四代为靶向制剂。
近年来,药物制剂研究向着“三效”(高效、速效、长效)和“三小”(毒性、副作用、剂量)方向发展。
国外对溶出理论,溶出影响因素及其机理研究较重视,从配方到技术做了大量工作,对亲水性辅料,表面活性剂及其他辅料对具体片剂崩解和药物溶出的影响及其机理做了深入研究,对制剂工艺,溶出机理作了溶入观察,其结果对指导处方和工艺设计都有指导意义。
从85年我国药典收载溶出度检查及新药审批办法公布以来,我国的药物制剂工艺有了长足的发展,主要反映在辅料、剂型、工艺上。
采用新辅料不仅可以改变药物制剂外观,也可以改善溶出度,有关这方面指导较多,不一一列举,近几年来控释、缓释制剂发展较快,有微孔膜包衣,肠溶核心型片,多层控释片,胃内膨胀给药系统等多种类型,对控释、缓释制剂的评价除传统的AUC、Tmax,Cmax外,还有缓释时间指数,有效血浓维持时间,美国控制剂专业会议对口服控释制剂的体外实验做了具体规定,有报导用多聚物或无毒塑料制成骨架片以达到缓释要求,但应注意,不同溶解度的药物从骨架片中溶出的机理不同,近年来固体分散研究领域不断发展,它不仅可以增加药物溶出度,提高生物利用度,还可能制备速、缓释产品,其技术已为越来越多的人们所重视。缓释制剂的溶出度有三种类型,保证药物的缓释作用是控制药品质量的重要五一节。新剂型如分散片、口服速溶制剂的崩解溶出速度均得到很大改观,新剂型的开发和发展需要先进的理论指导,尤其是靶向给药系统发展,要求把制剂型研究工作摧向新的高度,迫切需要从分子水平来探讨制剂问题,90年代国内外的药物制剂有了新发展,产生了令人瞩目的社会效益和经济效益。
总而言之,药品质量标准的提高,促进了药物制剂的发展,试想药典如未收载溶出度检查,那么广大患者服用的将仍是难溶出的,生物利用度低的药物,近10多年来,我国的药物制剂水平大有提高,但应该认识到我国的工业药剂学和生物药剂学其及实践与国外先进国家相比还有很大差距,有些领域还是空白,药物工作者任重而道远