保偏光纤参数
❶ 单条G.652光纤的带宽应该怎么计算,需要哪些参数
.2.1 研制铌酸锂调制器多波长光发射端机光发射机的稳定度直接关系到传输系统及网络的性能。在深入研究偏振扰动对发射端机调制信号强度噪声影响的基础上,除了对光发射源采取温度、输出功率控制外,本项研究采用了铌酸锂光强调制器的偏置点自动控制技术、保偏耦合技术,实验结果证明可以大大提高光发射端机的稳定性。利用研制的16×10Gbps铌酸锂调制器多波长光发射端机,成功实现了16×10Gbps 400km G.652光纤传输系统10小时无误码连续工作。
1.2.2 建成大容量、长距离DWDM光传输系统建成的DWDM光传输系统传输容量为200Gbps,实验室模拟传输距离为400公里。单信道速率达10Gbps以上的光信号在G.652光纤传输时,光纤色散和非线性会导致光脉冲畸变,使系统传输性能恶化。因此,在单信道速率达10Gbps以上的传输系统中光纤色散和非线性效应成为限制系统传输距离的主要因素,必须综合考虑光纤色散和光纤非线性效应对系统性能的影响,进行色散管理。本传输网络中采用色散补偿光纤(DCF)和自行研制的啁啾光纤光栅两种技术进行色散管理。
1.2.2.1 利用DCF进行光纤色散管理在深入研究色散补偿光纤(DCF)在系统中的配置、光纤的非线性效应、级联EDFA的ASE噪声积累以及EDFA的增益饱和等因素对系统传输性能影响的基础上,通过在传输网络中采用预补偿、后补偿、欠补偿的色散管理技术;偏振复用技术;光纤链路段的优化配置以及EDFA的增益钳制技术,可以有效提高网络的传输性能。在清华大学、北京大学和中科院三点构成二纤双向环网中成功实现了总容量为200Gb/s(16×10Gb/s(东向)+16×2.5Gb/s(西向))、距离为400公里(G.652光纤)、各个波长信道的传输功率代价均小于2dB(误码率=10-10)的网络传输。
1.2.2.2 利用啁啾光纤光栅进行色散补偿啁啾光纤光栅色散补偿器具有体积小、成本低、无非线性窜扰、色散补偿量大等优点。本项目在深入研究啁啾光纤光栅色散补偿技术的基础上,克服了光栅制作中的诸多技术难点,成功实现了4个波长信道400公里G.652光纤的色散补偿,补偿后各个波长信道的传输功率代价均小于2dB(误码率=10-10)。
1.2.3 攻克光层网络自愈保护关键技术难题在光子层实现网络的自愈保护是IP/DWDM技术中的关键,是新一代光传送网络(OTN)中必备的一项重要网络功能。通常,网络的自愈保护方式包括复用段保护和通道段保护两种。复用段保护具有简单、容易实现的特点,是目前光子层保护中主要采用的方式,但是复用段保护在自愈保护的灵活性、支持不同业务类型以及不同的服务质量等方面远不如通道段保护。而通道段保护的主要难点是结构复杂、实现较难,但却能够满足未来网络的需求。考虑到本网络是为未来网络技术研究的试验平台,在本项目研究中提出并开发了一种基于二纤双向环网的波长通道段保护(BWLSR/2)的光子层自愈保护技术。
其基本方法是在环的东向和西向采用不同的波长,当需要保护时断纤两端的节点将需要保护的信号倒换到相反的方向,实现光信道的自愈保护。光网络层的自愈保护盘负责监视光信道的状态和波长信道的倒换。本保护系统可以在10ms以内检测到光信号的丢失,当确定需要保护时,对相应节点进行信道倒换,完成对业务的自动保护。进入保护状态以后,自愈保护盘会每隔一定时间就进行一次检测,自动测试断纤是否已经修复,当发现断纤已经修复后将自动恢复使用正常的传输线路。整个过程用时控制在50ms以内,达到了光网络最高级别保护时间的要求。
在波长的分配上本保护系统进行了改进。传统的方法是将波长按顺序分为两组,分别在两个方向传输,这样正常时光纤中只有前一半波长或后一半波长,信道间隔仍为100GHz(以本系统16波100G间隔为例)。本实验中将波长分为奇数和偶数两组,正常时光纤中为奇数波长或偶数波长,这样信道间隔从100G增加到200G,大大改善了系统性能,并有利于系统向更高速率发展,实验数据也有效地说明了这一点。配合最新的interleaver器件还可以在不用增加保护用器件的情况下增加波长数,具有波长模块性。因此,这种方式在旧系统升级或建设新系统时为以后升级留有余地等方面有着很高的灵活性和实用价值。
在信号的检测机制上考虑并利用了EDFA的自发辐射,有效提高了故障判断的可靠性,并达到了较快的检测速度。其保护和恢复过程都不需要网管系统的支持,不需要在监控信道中传递APS信息。这样,本系统可以加载在任何供应商提供的二纤双向环网设备上,使其具备光子层的自愈保护能力。本系统的CPU系统具有与多种数据接口设备进行通信的能力,在软件中加入通信函数就可以在网管系统中对保护单元进行监控和管理,使此保护单元成为系统的组成部分。同时,采用这种方式可以摆脱自愈保护子系统对网管系统的依赖性,即使网管工作站或网元管理盘死机,保护系统都可以正常工作,从而尽可能高地提高了传输系统的生存能力。而目前国内外的系统采用的多是网管系统管理的保护方式,一旦网管系统或OSC信道出了问题,自愈保护也就无法继续正常工作,系统生存能力受到极大的威胁。
在自愈保护软件的设计上,整个软件采用了管理者/代理(M/A)的管理模式,负责监视保护倒换光开关的状态,以便对网络进行可视化监控。光开关的状态信息通过盘控器上报给网元管理盘(EMU),后台网管通过轮循EMU得到光开关状态信息。自愈软件是在UNIX操作系统上开发的,界面上的图像采用了兼容WINDOWS下的格式,自愈软件能够完成实时地网络自愈功能(50毫秒以内)。
本系统所采用的光子层的自愈保护技术具有Э啃愿摺⑺俣瓤臁⑹褂昧榛罘奖恪⒓嫒菪院谩⒖衫┱鼓芰η俊⑸?婺芰η康忍氐悖?撬?嘶分凶酆闲阅芙虾玫囊恢肿杂?;し椒āD壳?该技术的使用在国内外的其它商用或试验网络中均未见报道。
1.2.4 实现全光波长转换在DWDM光传输系统上构建高速计算机互连网络,需要解决IP路由器光输出转换为DWDM系统标准波长的光波长转换技术问题。光波长转换器是IP路由器接入DWDM系统的必备单元,采用"光-电-光"(O-E-O)实现光波长转换是目前最为成熟的技术,被大多数的商用网使用。而全光波长转换技术则是一种正在研究的技术,代表着该技术的发展方向。在本传输网络中采用了这两种技术实现光波长转换。研制了10Gbps和2.5Gbps的"光-电-光"(O-E-O)光波长转换实用化设备;利用半导体光放大器非线性效应实现了10Gbps的全光波长转换,并在抑制半导体光放大器码型效应、提高信噪比方面取得了创新成果。
1.2.5 密集波分多路复用DWDM光纤传输系统的创新点本项研究在以下几方面取得创新性研究成果,达到国内领先和国际先进的技术水平:
(1) 研制成功1.6×10Gbps铌酸锂调制器多波长光发射端机,波长复用能力达到16波、100GHz间隔。
(2) 建成传输容量为200Gbps、传输距离为400公里的DWDM光传输系统,传输性能达到功率代价小于2dB@BER=10-10。
(3) 开发一种基于二纤双向环网的波长通道保护(BWLSR/2)的光子层自愈保护技术,系统的自愈恢复时间在50毫秒以内。
(4) 研制了10Gbps和2.5Gbps的"光-电-光"(O-E-O)光波长转换实用化设备;利用半导体光放大器非线性效应实现了10Gbps的全光波长转换。
1.3 高速计算机互连网络"高速计算机互连网络"的研究目标是:自主设计并建设我国第一个下一代计算机互联网络示范平台,推动我国下一代互联网关键技术和基础理论的研究,为开展高速互联网络重大应用研究和中国加入国际下一代互联网络研究提供最为关键的支撑环境。
项目的研究内容涉及网络基础设施和网络服务两个组成部分。在网络基础设施方面,建成了基于密集波分多路复用DWDM光纤传输系统的下一代高速计算机互连网络,最高传输速率达到10Gbps;建成了高速网络互连交换平台DRAGONTAP,实现了与国际下一代互联网络的互连,并与国内其他学术性网络实现了互连。在网络服务方面,开展了组播multicast、服务质量控制QoS、IPv6、开放式网络管理等试验研究,并在此基础上开展了高速互联网络理论体系以及下一代高速计算机互连网络相关基础理论的研究。
❷ 国内保偏光纤器件,保偏光纤产品哪家公司做的质量好,参数稳定,可以过可靠性,求介绍
我建议你们公司测试一下国内公司做的保偏产品,保偏产品最关键的参数是消光比,测试一下三温(0度,常温,70度),测试后消光比在3dB以内的质量肯定ok;如果不在3dB以内或者大大超出这个标准,我建议你们最好更换供应商,不然后续有大麻烦的,因为不稳定的消光比会客户带来很大的麻烦,也许今天这个值,明天那个值;举个例子:有些客户现场测试消光比合格,到终端客户手上消光比就变的不合格了,所以就丢失这个客户;这个也是我自己在别的公司的亲身体会;切莫因为这些问题导致自己丢失客户; 对于过可靠性大部分公司内部会针对自己的半成品做可靠性试验(保偏产品能过可靠性的我估计不会超过5个),如果说带套管,带钢管的成品过可靠性试验我估计不会超过3个;为什么这么说呢,成品过可靠性分为两步走:第一步是半成品过可靠性;第二部是套管粘胶帽,胶帽粘钢帽,钢帽粘钢管这几个部分连接而成的整体要过可靠性,也就是说外封后也要过可靠性,大部分公司的标准只是做过第一个可靠性试验,并没有做过第二个可靠性试验;所以关于可靠性我的理解是两者要全过才是真真的过了可靠性;所以真真过了可靠性的没几个公司;
❸ 请问光纤中的消光比计算方法和公式是什么啊,越详细越好。
消光比是激光功率在逻辑“1”的平均功率和在逻辑“0”的平均功率之比。可用EXT表示,一般用对数式表示为:EXT=10lg(p1/p0)(dB)
在实际生产中,由于设备及环境差异的问题,消光比很难控制,只能将消光比控制在某一范围。由于消光比的决定因素是功率,所以消光比的影响因素可以从两大方面考虑:
第一,温度差异。温度的差异会导致电路元件参数的改变,影响功率,从而引起消光比变化。
第二,光路洁净度差异。光路的洁净度会影响光功率的损耗,但是P1与P0的功率变化值不是线性关系(分子分母减去同一个值),根据定义消光比会变大。
❹ 光缆光纤的色散与它的参数
引言
随着计算机的普及和互联网的迅速发展,使得人们对信息的需求量与日俱增。这样光纤通信技术就义不容辞地承担起了海量信息的传输和交换。根据20多年的光纤通信技术工程应用经验,我们应该根据不同类型的网络所承担任务的特点来选择不同性能的光纤品种来完成不同类型的网络应用所应该履行各种各样的业务职责。为此,对于从事通信光纤研究人员就应该针对通信光纤具体的网络应用环境问题, 积极开展对光纤的材料种类、制造工艺和性能测量研究,以求能够用优越性价比的光纤来进一步满足核心网、城域网、接入网光纤通信技术发展的需求。
在长期从事通信光纤研究的实践工作中,人们已经掌握了可以用来制造光纤的材料有石英玻璃、多组份玻璃、红外玻璃、塑料、光子晶体等的基础上,还应该积极开展就各种光纤材料性能、制造方法、性能测量方法等方面的深入细致地研究分析。今天,为什么通信光纤大都选用石英玻璃,其理由是石英玻璃具有优越的物理、化学性能,原料提纯简单,气相沉积和拉丝成型控制精度高等。通信石英玻璃光纤的技术发展动向是从材料方面应该以合成材料来代替天然材料以提高材料纯度,降低光纤衰减。在制造工艺上必须采用复合工艺(如用PCVD+OVD等)来代替单一工艺(MCVD、AVD、PCVD或者OVD)以提高生产效率,降低光纤价格。以特殊的脱水工艺来消除通信石英玻璃光纤在1385nm的水峰来扩大通信石英玻璃光纤的可工作波长范围:1260~1670nm,以满足粗波分复用CWDM需求。
我们认为,在本文中除了应该在重点阐述光纤材料的同时,还应该兼顾通信光纤及其性能的研究和分析。因为不同的通信网络对光纤的性能要求各异,所以通信光纤研究人员已经根据网络的特点开发出了许多不同的类型的光纤品种,以满足各种各样通信网络层次的光纤通信技术的需要。人们正是针对DWDM核心网的远距离、大容量、高速率的通信特点研究出了核心网用的G.655 光纤和G.656 光纤以及接入网的短距离、小容量、低速率的特点, 研究出了接入网用的塑料光纤和光子晶体光纤。本文将简单介绍ITU-T 2004 年6月发布的宽带光传输非零色散位移光纤(G.656 光纤)、塑料光纤和光子晶体光纤的性能特点以及它们的最新研究动向。
2 研究动向
2.1 宽带光传输用非零色散光纤
G.655 光纤的研究重点就是优化色散系数、色散斜率、有效面积、工作波长范围。为了更加适应DWDM系统的传输速率、信道间隔、工作波长的不断变化需要,国际电信联盟第15 研究组于2003年1 月将2000年版的ITU-T G.655 A 、B 两种光纤,进一步细分为ITU-TG.655A、B、C三种光纤。他们细分的理由是G.655A光纤只支持200GHz及其以上间隔的DWDM,10Gbit/s系统传输400km在C波段的应用,也可以支持以10Gbit/s 为基础的DWDM 系统。G.655B 光纤支持100GHz 及其以下间隔的DWDM 在C 和L 波段的10Gbit/s 系统传输3000km 的应用。G.655C光纤消除在1385nm 附近的水峰,系统可以在1360~1530nm工作,既能满足100GHz 及其以下间隔的DWDM在C和L波段的应用,又能使N×10Gbit/s系统传输3000km,或者N× 40Gbit/s 系统传输80km以上。然而,G.655光纤在N×10Gbit/s的DWDM系统应用中,人们发现其存在着工作波长窄,色散斜率大等问题,为了解决G.655 光纤的问题,世界各个著名光纤制造厂商开展了宽带光传输用非零色散位移光纤的研究,最近几年已经研究出了这种新型光纤,即宽带光传输用非零色散位移光纤。
为了进一步规范各个著名光纤制造厂商宽带光传输用非零色散位移光纤的性能指标,2004年6月国际电信联盟标准化部门发布了宽带光传输用非零色散光纤和光缆的特性(ITU-T G.656 单模光纤和光缆)的建议。G.656 光纤是“宽带光传输用非零色散光纤”,即在宽阔的工作波长1460~1625nm 内色散非零。G.656 光纤实质上是一种宽带非零色散平坦光纤, 其特点在工作波长范围内色散应该大于所要求的非零值,有效面积合适,色散斜率基本为零。因此,G.656 光纤既可以显著降低系统的色散补偿成本,又可以进一步发掘石英玻璃光纤潜在的巨大带宽。G. 656光纤可保证通道间隔100GHz、40Gbit/s 系统至少传400km。G.656光纤和光缆的性能参数建议值,如表1所示。表2列出了G.656光纤链路和系统设计的一些重要参数之间的关系。为了使读者理解方便,本文就G.655 光纤和G.656 光纤的性能分别予以简单介绍。
G.655A 光纤支持ITU-T G.691、G.692 和G.693应用时的推荐使用值。对于G.692 应用,考虑到使用的具体光纤的信道波长和色散特性,最大的发射功率将受到限制,它适用于通道间隔200GHz及其以上DWDM系统在C波段的应用,同时也支持以10Gbit/s 为基础的DWDM系统。
G.655B 光纤支持以10Gbit/s 为基础的100Hz及其以下间隔的DWDM系统在C 波段和L 波段的应用。表2中所列出的G.655B 光纤参数支持ITU-T G.691、G.692、G.693和G.959.1 应用的推荐使用值。对于G.692 规定的应用,取决于所使用光纤的信道波长和色散特性,发射功率可以大于G.655A 光纤,典型的最小波长间隔为100GHz。G.655B 光纤的PMDQ 为0.50ps/km 1/2,可以保证10Gbit/s传输系统的传输距离达到400km。
G.655C 光纤性能与G.655B 光纤性能相似,但是G.655C 光纤应该既能满足100及其以下间隔的DWDM系统在C 波段和L波段的应用,又要求G.655C光纤的PMDQ比G.655B光纤低,即G.655C光纤的PMDQ为0.20ps/km 1/2,使得G.655C 光纤在N×10Gbit/s系统传输300km以上,或者支持N×40Gbit/s 系统传输80km以上的应用。
由表2得知,G.656 光纤性能本质仍然属于非零色散光纤。G.656 光纤与G.655 光纤不同的是,(1)具有更宽的工作带宽,即G.655 光纤工作带宽为1530~1625nm(C+L 波段), 而G.656 光纤工作带宽则是1460~1625nm(S+C+L 波段),将来还可以拓宽超过1460~1625nm,可以充分发掘石英玻璃光纤的巨大带宽的潜力;(2)色散斜率更小(更平坦)能够显著地降低DWDM系统的色散补偿成本。G.656光纤是色散斜率基本为零、工作波长范围覆盖S+C+L波段的宽带光传输的非零色散位移光纤。由表2 可知,G.656光纤的PMDQ为0.10ps/km 1/2,使得G.656光纤在N×10Gbit/s 系统传输4000km以上,或者支持N×40Gbit/s系统传输400km以上的应用。G.656 光纤特别适合作为通道间隔100GHz、传输速率40Gbit/s、传输距离400km的DWDM或者CWDM系统的光传输介质。
2.2 塑料光纤
为了降低局域网光纤接入成本,短距离局域网光纤多采用石英玻璃光纤多模光纤加发光管的配置方案。那么局域网石英玻璃光纤的研究重点是通过提高多模光纤梯度折射率分布控制精度和改善光源注入条件的方法来提高石英玻璃多模光纤的工作带宽和减小光纤的衰减,以适应吉比特以太网和10吉比特以太网发展的需要。近几年,国内外著名的光纤机构纷纷研究出了新一代的50/125 μm的多模光纤。这种多模光纤的主要特点是由于光纤制造中消除了梯度折射率分布中心的缺陷,使得梯度折射率分布控制精度远远高于传统50/125μm的多模光纤,从而大大提高了多模光纤的工作带宽。新一代的50/125μm的多模光纤与850nm的VCSEL配合使用,可以实现在850nm波长上进行10Gbit/s 串行传输300m距离。
随着半导体材料制造水平的不断提高和生产成本的大幅度的降低,光纤、有源/无源光器件的价格日益便宜,从而推动了光纤到大楼(FTTB)、光纤到家庭(FTTH)、光纤到桌面(FTTD)的实用化发展进程。特别是最近几年,日本和美国等发达国家已经开发出了梯度折射率分布塑料光纤。由于塑料光纤制造工艺简单、材料便宜和连接成本低的新型光纤等,所以其已经被应用于企业和大学校园局域网的内部通信系统。
与石英玻璃光纤相比,塑料光纤(POF, Plastic Optical Fiber)以其芯径大、制造简单、连接方便、可用便宜光源等优点正在受到宽带局域网建设者的青睐。正是宽带局域网的迅速发展带来了POF 技术的革命性进步,特别是以全氟化的聚合物(如商用产品名称为CYTOP)为基本组成的氟化塑料光纤(PF-POF)在局域网的逐步使用,从而标志着PF-POF 正在由试验室步入局域网工程应用。
一般,在局域网的工程应用的POF是以全氟化的聚合物为基本组成的PF-POF。众所周知,PF-POF的研究要点为衰减、带宽、制造方法等问题。最早POF 是用聚甲基丙烯酸甲酯(PMMA)材料制成的。由于PMMA材料中存在着大量的C-H键谐振会引起很大的光吸收,所以PMMA-POF 在650nm的衰减系数高达160dB/km以上。研究人员采用全氟化的聚合物材料为基本成份制造出了在850nm和1300nm的衰减系数小于20dB/km 的PF-POF。究其原因是氟化的聚合物中的C-F 键大大减小了光吸收,故全氟化的聚合物PF-POF 的衰减系数十分小。
与石英玻璃光纤相同,提高POF带宽主要方法有,(1)采用梯度折射率分布结构;(2)精确控制小的材料色散、高的模耦合和小的差分模衰减之间的作用。因此,为了提高POF带宽和减小模间色散,POF都采用梯度折射率分布结构;再通过选择小的材料色散材料,提高模耦合效率和减小差分模衰减等措施可达到提高POF带宽的目的。表3 列出了当前PMMA-POF、PF-POF和挤塑PF-POF的性能及其应用的最高水平,供读者参考。
长期以来,POF的生产采用的是1982年由日本庆应大学发明的“界面凝胶”工艺。该工艺利用作为包层的塑料管与塑料管内作为纤芯的混合液体之间发生的“界面凝胶”作用来形成POF的梯度折射率分布结构的。但是,“界面凝胶”工艺生产PF-POF 的“界面凝胶”反应需要很长的时间,所以该工艺的生产成本比较高。为了进一步降低POF的制造成本,美国OFS公司试验室的Whitney R.White 等人开发出了一种简单挤塑工艺来生产PF-POF。这种挤塑工艺是借助两台挤塑机分别挤出芯和包层材料熔体,然后两种材料熔体在挤塑机头处合为一体形成一个同心的熔体流,掺杂材料位于熔体的中心。在挤塑机头后,这些熔体材料流过一个长加热扩散管,从而允许来自熔体的中心的小分子掺杂剂扩散到包层材料熔体中。通过控制温度、停留时间和芯/包层材料的相对流速,人们就可以制造出各种折射率分布结构和芯/尺寸的PF-POF。挤塑PF-POF 的性能及其应用的最高水平,如表3所示。
2.3 光子晶体光纤
众所周知,材料科学是光纤通信技术的基础,即正是在半导体激光器和光纤的发明之后才诞生了光纤通信。由通信光纤研究的历程中,我们可以深切得到这样一个结论,通信光纤品种的不断更新、性能研究的突破,这一切都是建立在通信光纤材料研究的突破上。例如石英玻璃光纤的诞生, 使得世界的通信由电通信进入光通信;红外光纤的成功进一步减小了光纤的理论传输衰减; 塑料光纤的问世,又大大降低了光纤和接续的成本,从而推动了光纤通信到家庭、光纤到桌面的步伐。光子晶体光纤的结构特点,使得其具有独特性能,为光纤通信开发出新型光纤奠定了技术基础。随着PCF 的导光理论、制造工艺和应用技术的成熟,PCF有望成为下一代光纤通信用的光传输介质。1991 年,Russell 根据光子晶体传光原理又提出了光子晶体光纤的概念。最近,人们又利用石英玻璃管和石英玻璃棒研究出了光子晶体光纤。光子晶体光纤(PCF)是一种由单一介质(通常为石英玻璃,也可以为塑料)构成、并且在二维方向上呈现周期性紧密排列(周期性六角形)、而在三维空间(光纤轴向)基本保持不变的波长量级空气孔构成的微结构包层的新型光纤。与常规光纤不同,PCF是由石英玻璃—空气孔微小结构组成的光纤,其又可以分为实芯光纤和空芯光纤,即前者是由石英玻璃棒和石英玻璃毛细管加热拉制成的,而后者则是由石英玻璃管和石英玻璃毛细管加热拉制成的。正是通过前按照设计出的PCF 的基本结构: 按照预先设计的形状(六角形)将石英玻璃毛细管紧密地排列在作为纤芯的石英玻璃棒或一圈石英玻璃毛细管的周围,即集束成棒,再通过加热拉制就可以制成所需要的性能的PCF。表征PCF 性能的3 个特征参数是纤芯直径、包层空气孔直径、包层空气孔之间距离。在PCF的拉制过程中,改变拉制温度和速度就可以调整PCF的结构和性能,使得PCF作为光传输介质和光器件具有许多诱人之处。实际上,人们是通过调整纤芯直径、包层空气孔直径、包层空气孔之间距离方式来达到分别制造出具有低衰减、高色散、非线性效应小(大模场直径或者大有效面积)、保偏和小弯曲损耗等性能的PCF的目的。
PCF具有的低损耗、小色散、低非线性效应特性,使得其在光纤通信领域的应用是非常有前途的,尤其是对于长途通信系统。随着PCF 设计方法和制造工艺的不断改进,PCF性能日趋完善。特别是K.Tajima 等人通过合理设计结构参数,如空气孔直径d和空气孔间距r尺寸,以及d/ r值,从而达到既减小PCF的衰减,又改善PCF 的色散和色散斜率的目的。现在,PCF已经进入了实验室的光纤通信系统传输试验研究阶段。
2003年初的世界光纤通信(OFC)会议上,日本电报电话公司接入网业务系统试验实的K.Tajima等研制出衰减为0.37dB/km 、长度超过10km的超低衰减、长长度的PCF。PCF 具有完全的单模特性。PCF的可用工作波长范围为0.458 ~1.7μ m。只要对0.458~1.7μm工作波长范围进行优化,PCF的传输容量将会得到大大的提高。NTT公司的研究人员利用PCF组成10km的线路进行了8×10Gbit/s的波分复用传输试验,试验效果良好。C. Peucheret等人的研究小组利用5.6km的PCF线路进行工作波长为1550nm的40Gbit/s的传输试验。这个试验系统所用的PCF 的有效面积是72μm2、其衰减为1.7dB/km 、色散系数为32ps/km·nm。试验表明,PCF作为光信号传输介质,系统的性能没有明显的劣化。这充分证明,与常规光纤相比,PCF作为光信号传输介质最大的优势是在保证很小的偏振模色散系数的前提下,色散系数、有效面积和非线性系数可以灵活设计。随着PCF的导光理论、制造工艺和应用技术的成熟,PCF有望成为下一代光纤维通信用的光传输介质。
3 结论
由上所述,通信光纤技术的发展过程是光纤材料、制造技术、性能光纤和光纤品种发展过程。为此,我们可以得到这样3 个结论,(1)光纤通信的发展是光纤、器件、系统三者彼此发展,共同促进的结果;(2)不同种类的通信光纤是为不同层次的网络服务的;(3)为了满足新的通信系统应用, 光纤研究人员一定会不断地开发出新型的通信光纤。
❺ 光纤传输理论中无量纲参数u,w,v怎么得来的
在制造保偏光纤的过程中我们故意使光纤呈现出不对称性。比如椭专圆纤芯光纤(长轴和属短轴上的等效折射率不同)和包含不对称压力产生部件的光纤。蝴蝶结领结形状的阴影区掺入了大量的杂质元素(如硼)。由于掺入元素的热膨胀系数和包层硅的热膨胀系数大不一样,将在纤芯上产生一个非对称的压力。这样使得单模光纤的两个垂直偏振状态之间无法耦合,从而产生了应力双折射,光纤光缆等相关的最好使用达标的,我们用的菲尼特的。
❻ 长飞保偏光纤跟康宁保偏光纤耦合会不会影响消光比
你可以向这两家的销售索要技术文档,然后比对相关参数;一般来说使用不同厂家的同种光纤的效果确实不如同厂家的同种(最好还要是同一批的)
❼ 光纤光栅最大带宽可以做到多大
看使用的方式,一般来说:
用飞秒逐点刻写的方式带宽都比较短;
用相位掩膜板法刻写的依照相位板的长度来确定,我们自己做过50NM带宽的。
❽ Sagnac效应
Sagnac效应的定义
定义1:
这一在惯性空间中,由光敏感转动的效应称为SAGNAC效应.光纤陀螺工作原理框图如图1所示.由光源发出的光,经藕合器传输到Y一波导调制器.Y一波导调制器将其输入光分成顺时针和逆时针传输的两束,进人保偏光纤环圈,以实现SAGNAC效应
源自: 闭环保偏光纤陀螺测试系统的研究 《国外电子测量技术》 2003年 苏中,李擎
来源文章摘要:闭环保偏光纤陀螺是一种新型固态速率陀螺。本文简述了其工作原理,设计了基于RS—485总线的陀螺性能测试系统软硬件,指出了需要进一步做的工作。
cjfd2003
GWCL200306004
定义2:
这种现象称为Sagnac效应,光纤陀螺仪实质上就是一种Sagnac干涉仪.对于光纤陀螺仪的性能测试主要涉及以下几个技术参数:标度因数K(scalefactor)陀螺仪输出量与输入角速率的比值
源自: 光纤陀螺测试系统设计 《航空精密制造技术》 2003年 韩剑辉,陈桂红,杨功流
来源文章摘要:叙述了光纤陀螺测试系统的组建方案以及主要功能,进行了控制机、自动转台、光纤陀螺之间的通讯模块软硬件设计,分析了测试程序的特点。通过配接不同的测试仪器,该系统可完成其它种类的惯性元件测试。
❾ 光纤光学中光学特性中的NA、MFD是什么意思
扯淡吧,专家!!
NA是光纤的数值孔径numerical aperture!他是用来描述光线入射光纤端口时,能允许光线在光纤中全反射传输的最大孔径角!
MFD是光纤的模场直径Mode Field Diameter!他是用来描述光纤中传输的光线所能占据的光纤中空间的最大直径,也是光纤中光斑截面的最大直径,什么型号啊,不懂别乱说好不好啊。
通常光纤的生产厂家为了让用户更方便的知道光纤的特性,经常将这个光纤的数值孔径,模场直径,掺杂形式,保偏形式写到光纤的型号里面,无非就是为了让用户更方便了解吧了。
其实际意义根本不是型号,型号完全可以用1,2,3,4这种玩意来代替。
❿ SM光纤和PM光纤主要有哪些区别,其各自性能
SM是单模光纤的意思,单模光纤(SingleModeFiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光纤。因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。后来又发现在1.31μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。这样,1.31μm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段1.31μm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。
在光纤制备中,人为地使双折射率(B)很大,或其拍长度λ短到毫米量级的光纤,简称PM光纤或HB光纤、高双折射光纤。从偏振光学上看,如果把一般单模光纤当作各向同性介质,则高双折射光纤就相当于双折射率很大的单轴晶体。高双折射光纤又称为保偏光纤。事实上,只有输入线偏振光的偏振方向沿光纤的主轴方向传输时,光纤才能保偏,其它方向注入并不能保持偏振方向在传输中不变,输出光一定是椭圆偏振光。
由此可见,pm光纤属于单模光纤范畴,只是一种特殊用途光纤而已。