无线电能传输原理
Ⅰ 谁知道无线传输能量的原理
原理很简单,就是电磁场相互转换。能量传输率不是很高“Measurements showed that the setup could transfer energy with 40% efficiency across the gap”而且对人体不像高频微波内人一样产生伤容害。"The body really responds strongly to electric fields, which is why you can cook a chicken in a microwave," said Sir John.
"But it doesn't respond to magnetic fields. As far as we know the body has almost zero response to magnetic fields in terms of the amount of power it absorbs."
Ⅱ 无线电能传输的定义
根据能量传输过程中中继能量形式的不同,无线电能传输可分为:磁(场)耦合式、电(场)耦合式、电磁辐射式(如太阳辐射)、机械波耦合式(超声)。其中,磁耦合式是目前(21世纪初)研究最为火热的一种无线电能传输方式,也就是将高频电源加载到发射线圈,使发射线圈在电源激励下产生高频磁场,接收线圈在此高频磁场作用下,耦合产生电流,实现无线电能传输。
Ⅲ 无线充电是什么原理
无线充电就是利用高频电磁-磁电转换原理嘛,传统的电感式变压器就是这个原理版嘛,只不过变压器的权磁回路是封闭的,无线充电的磁回路是半开放(定向)的而已。而且日常生活中的开放性电磁转换也无处不在,比如电视发射塔和电视机之间、手机基站和手机之间都是利用这个原理,只不过因为距离的问题,受体接收到的电能太小了,小到只能作为一种信号源而无法作为能源使用。但也有例外,对于无线电发烧友来说都知道有种叫做“矿石收音机”的古董,它就是直接利用无线广播信号作为其工作能量源的。
Ⅳ 特斯拉无线传电原理是什么
原理将两个线圈放置于邻近位置上,当电流在一个线圈中流动时,所产生的磁通回量成为媒介,答导致另一个线圈中也产生电动势。
理论和经验都表明:当原边电流频率、幅值越高,原、副边距离越小,与空气相比,磁心周围介质的相对磁导率越大时,可分离式变压器的传输效率越高。但实际应用当中原副边距离不可能无限小,必须对原副边采取相应的补偿措施。
(4)无线电能传输原理扩展阅读
我国的研究方向:
我国东西部经济发展的差距日益扩大,资源分布不平衡的矛盾日益突出。一些边远山区、牧区、高原、海岛,人口稀少,居住分散,交通不便,经济落后,那儿缺乏常规能源,又远离大电网,严重影响当地经济发展。这种情况下,利用微波输能技术,可以解决电网的死角。
输电工程最关心的是效率和经济性。无线电能传输的效率取决于微波源的效率、发射/接收天线的效率和微波整流器的效率,其经济性如何,依赖于所用频段的微波元器件的价格与有线输电系统所用器材价格的比较,也与具体的输电网络的参数有关系。
Ⅳ 无线电力传输的工作原理是什么最好能具体点。
综述
汽车中控台为手机进行无线充电
利用无线电的手段,将由电厂制造出来的电力转换成为无线电波发送出去,在通过特定的接收装置将无线电波收集起来并转换为电力,供人们使用。 1 特斯拉的最著名的发明是“特斯拉线圈”,这是一种分布参数高频共振变压器,可以获得上百万伏的高频电压。 特斯拉线圈的线路和原理都非常简单,但要将它调整到与环境完美的共振很不容易,特斯拉就是特别擅长这项技艺的人。 特斯拉后来发明了所谓的“放大发射机”, 现在称之为大功率高频传输线共振变压器,用于无线输电试验。特斯拉的无线输电技术。值得一题的是:特斯拉把地球作为内导体,地球电离层作为外导体,通过他的放 大发射机,使用这种放大发射机特有的径向电磁波振荡模式,在地球与电离层之间建立起大约 8 赫兹的低频共振,利用环绕地球的表面电磁波来传输能量。 这一系统 与现代无线电广播的能量发射机制不同,而与交流电力网中的交流发电机与输电线的关系类似,当没有电力接收端的时候,发射机只与天地谐振腔交换无功能量,整 个系统只有很少的有功损耗,而如果是一般的无线电广播,发射的能量则全部在空间中损耗掉了。 特斯拉有生之年没有财力实现这一主张。后人从理论上完全证实了 这种方案的可行性,证明这种方案不仅可行,而且效率极高,对生态安全,并且不会干扰无线电通信。只不过涉及到世界范围内的能量广播和免费获取,在现有的政 治和经济体制下,无人实际问津这种主张。 2 此技术目前仍处于研究阶段,早在前两年,各国科学家就开始研究利用无线电力传输技术,在月球建设太阳能发电站,然后将其传送到地球为人类提供服务。 3 日本也在大力研究当中并计划在2015年前后将其投入到居民生活当中。 在2010CES展会上,海尔推出了一款无尾电视,正是应用了无线电力传输技术。
海尔无尾电视
无线电力传输技术方式及特点: 让电流通过空气传播,会不会把使用者“雷”到呢?研究人员表示,“无尾电视”采用的无线电力传输技术不产生辐射,其安全性已经通过FCC、IEEE和CCC等标准认证,不仅不会产生危险,还避免了带电插拔、电源线短路等等可能的安全隐患。在确保安全性的前提下,无线供电方式将可以彻底解决房间布线凌乱、电器位置固定、插座破坏居室装修等等问题,给我们的生活带来更多便利和美观。 更重要的是,无线供电节省了大量的线材,无论是橡胶、塑料抑或铜、锡等金属的消耗都将因此而大幅度减少,节约资源、减少污染,低碳环保。
Ⅵ 无线电能传输的研究背景和意义
无线电波对信息的传输开创了人类通信的新纪元。而一切无线电技术都基于能源供给,因此电能的无线传输技术将开辟人类能源的另一个新时代,也将会孕育出众多只出现在科幻小说中的新事物新应用,其给大众带来的意义与影响也非同凡响。
通用性:由于电波的传输与设备的充电接口无关,所以如果无线供电技术一旦普及,不仅将使得电子产品不受插座和线缆束缚,供电与充电都将更方便,而且将使得不同品牌、不同接口的电气接口或充电器不兼容的问题得到解决。因此消费者将不再需要将其电池供电的电子设备插入交流电源插座,而经常出差的人们也可只携带一个薄薄的供电器垫,而不是满满一包杂乱的电源供应器,甚至酒店的房间里或许早已为客人准备好充电器垫,将可一举解决各种纷繁杂乱的电源适配器和充电器不兼容问题。
便携性:试想一下,如果鼠标垫可为无线鼠标供电,如果一个充电器垫就可以同时为智能电话、MP3 播放机、笔记本电脑及电子阅读器充电,不难想象,在不久的将来,全球性的无线充电设施就会遍布每个家庭、咖啡厅、机场和其它公共场所,消费者可以利用这些无线供/充电设备随时随地供/充电,这一切因为无线供电的存在而变得非常便捷,就像今天在机场、在咖啡厅可以无处不在的自由自在的上网冲浪一样。
美观性:没有了电线接口和充电接口,便携式移动类的电子设备体积将进一步缩小,从而增加携带的美观性与方便性;如今我们拥有愈来越多用于工作和个人娱乐的电子设备,速度增长如此之快,令人难以置信,所有这些设备如果都附带专用充电器,结果看到的是乱糟糟的一团电缆,好感大打折扣。而无线充电显然有助于显著改善这种状况。在解决了能效转化效率、电磁人体辐射安全的情况下,如果所有的家电都进入无线供电时代,将能够有效解决家庭布线、家电固定化、居室墙面、景观破坏等问题,为人们的生活提供更多的美化效果;同时,还将在大量节省布线所用的铜、塑料以及人力等资源方面发挥显著作用。
安全性:由于电子设备的外壳上可以省去没有金属接点或者电气连接开口,消除了接触可能产生的电火花问题,避免了电火花可能引起的爆炸;也可以避免由于经常性的插拔引起的插头损坏和接触不良等安全隐患;同时,电子产品的防水性和密封性将进一步增强,如使用无线充电技术的电动牙刷和电动剃须刀的防水性将进一步得到提高。医疗仪器制造商也希望经由无线充电的方法来取代插头,因为这将使电池供电的医疗设备具备防水性能,并且便于消毒。
应急性:无线供电还可用于地球上许多缺乏或无法布置输电线的地方,例如沙漠、海岛、偏僻的山村、待开发的南极大陆和北冰洋等;另外可以解决常规供电中难以解决的问题,例如加拿大等国开始尝试使用辐射式供电驱动的无人飞机作为电视转播台,美国有研究者设想在高速公路沿线设立微波发射台,为沿途汽车提供能源供应,因此在将来无线供电还可以提供一种特殊、紧急和快速的供电方法。
绿色性、永久性:将来,如果空间太阳能发电实现真正的商业运作化,人类将能从空间太阳能得到巨大的能量获取,从而真正解决能源问题,也真正实现绿色能源, 既促进了太阳能的开发,还可向地球以及地球以外的用电场合提供能源,,既解决了地球能源日以枯渴的问题,又减少了地球的污染、造福于子孙后代。
(*^__^*) 嘻嘻~!希望帮到你哦~!
Ⅶ 无线充电的原理是什么
无线充电系统主要采用电磁感应原理。
无线充电器是内指不用传统的充电电源线连接容到需要充电的终端设备上的充电器,采用了最新的无线充电技术,通过使用线圈之间产生的磁场,神奇的传输电能,电感耦合技术将会成为连接充电基站和设备的桥梁。
无线充电技术在 2007 年获得了 20 项专利,多种设备可以使用一台充电基站,手机、MP3 播放器、电动工具和其他的电源适配器的有线充电情况将不会存在了
Ⅷ 无线电力输送系统是什么原理,据说特斯拉曾经实现超远距离高压(上亿伏)无线电力传输!
通过发射器将电能转换为其他形式的中继能量;1890年特斯拉做了无线电能传输试验。
无线电能传输为无线电力传输,非接触电能传输,通过发射器将电能转换为其他形式的中继能量(如电磁场能、激光、微波及机械波等),隔空传输一段距离后,再通过接收器将中继能量转换为电能,实现无线电能传输。
根据能量传输过程中中继能量形式的不同,无线电能传输可分为:磁(场)耦合式、电(场)耦合式、电磁辐射式(如太阳辐射)、机械波耦合式(超声)。
1890年,特斯拉就做了无线电能传输试验。特斯拉构想的无线电能传输方法是把地球作为内导体,把地球电离层作为外导体,通过放大发射机以径向电磁波振荡模式,在地球与电离层之间建立起8Hz的低频共振,利用环绕地球的表面电磁波来传输能量。最终因财力不足,特斯拉的大胆构想没能实现。
(8)无线电能传输原理扩展阅读:
无线电力输送系统的主要应用:
1、通过海量能源节点的互联互通,全方位提高智能电网的信息感知深度和广度,助力建设世界首个泛在电力物联网示范区。
2、创新“电力基础设施共享”合作模式,利用电力塔挂设运营商天线,在2018年7月建成国网系统内首座全扇区双平台共享基站,铁塔公司利用电力单管塔挂设基站,从需求对接到基站开通由两个月缩短至十天。
3、电力无线专网投运后,可以为电网建设和运行提供有效的管理手段和技术支撑,全方位提高智能电网的信息感知深度和广度,以智能互联推动南京建成全球首个能源互联网典范城市。
Ⅸ 无线电源技术的原理
无线电源技术是一种利用无线电传输电力能量的技术,它要求传输效率尽可能高,传输功率尽可能大,这样才能满足对电力的需求。其研究应用领域涉及广泛,传输功率相差较大,小到用于生物移植的几十毫瓦、小型设备几十瓦功率,大到电动汽车或运动机器人的上千瓦功率以及磁悬浮列车应用的上兆瓦功率。目前存在三种解决技术:电磁感应技术、无线电波技术和电磁共振技术。
电磁感应技术
此技术类似电力系统中常用的变压器技术。在变压器的原边通入交变电流,副边由于电磁感应原理会产生感应电动势,若副边电路连通,即可出现感应电流,其方向遵从楞次定律,大小可由麦克斯韦电磁理论解出。相对于无线电源而言,变压器的原边相当于电源发射线圈,副边相当于电源接收线圈,这样就可以实现电能从发射线圈到接收线圈的无线传输。这种非接触式无线电力传输方式制造成本较低、结构简单、技术可靠、传输功率可从几瓦到几百瓦。
但是传送距离小于25px,被充电产品必须置于充电器附近,充电器必须具备对被充电产品进行辨识的能力,否则会向附近任意金属传输能量,导致其发热并产生危险。
电磁共振技术
这种技术基于电磁共振耦合原理,需要的发射和接收两个共振系统可分别由感应线圈制成。通过调整发射频率使发射端以某一高频率振动,其产生的不是弥漫于各处的普通电磁波,在两个线圈间形成一种能量通道。接收端的固有频率与发射端频率相同,因而发生了共振。随着每一次共振,接收端感应器中会有更多的电压产生。经过多次共振,感应器表面就会集聚足够的能量,这样接收端在此非辐射磁场中接收能量,从而完成了磁能到电能的转换,实现了电能的无线传输。这种非接触式无线电力传输方式传输功率可达几千瓦、传送距离可达3~4米,但是必须对所需频率进行保护,在几米范围内进行传输需要几MHz到几百MHz的频率。
无线电波技术
这种技术是利用微波或激光形式来实现电能的远程传输,系统由电磁波发生器、发射天线、接收天线、高频电磁波整流器、变电设备和有线电网组成。
电磁波发生器是微波源或激光器,把电源传送的电能转变为大功率、高频的电磁波,馈送给发射天线;发射天线将电磁波发送出去;接收天线收集电磁波的能量并输入高频电磁波整流器,产生的高压直流电经逆变后送入有线电网。这种非接触式无线电力传输方式传送距离可达10m,但是传输功率小(最高100mW)、功效低,发射器无线电波发送的大量功率以无线电波的方式被浪费掉。
可以实现电能从发射线圈到接收线圈的无线传输。这种非接触式无线电力传输方式制造成本较低、结构简单、技术可靠、传输功率可从几瓦到几百瓦。
Ⅹ 电力无线传输的原理是怎么样的
无线电力协会今日表示,希望能在不久的将来将"无线电力传输"建立一个标准,让所有的便携式设备都具备无线电力传输的功能,可以方便的对便携式设备进行充电过程.以后用户也许只要将移动设备对准某个接触板,就可以方面的进行充电了,省去了插拔接头的过程. 现任的无线电力协会成员目前有包括罗技,飞利浦,三洋,美国国家半导体和德州仪器,所有这些成员都希望把这项技术应用到航运的产品附:美国麻省理工学院的科学家们,利用天线共振器的装置,成功地将电力以无线传输的方式点亮了一只距传输器两公尺(两米)功率 60W 的灯泡. 美国麻省理工学院( MIT )物理学助教马林·索尔贾希克( Marin Soljacic )的研究小组宣布,试制出了无线电力传输装置,并已证实可向相隔 7 英尺(约 2.1m )远的 60W 电灯泡送电、点亮灯泡。试验的详细内容刊 登在了 2007 年 6 月 7 日的《科学》在线版——《科学快讯》( Science Express )上。此前索尔贾希克根据理论及数值计算已经确认了工作原理,不过试制出基于该原理的装置并证实可实际进行电力传输尚属首次。 索尔贾希克的研究小组此次试制的是名为“磁场耦合共振器( magnetically coupled resonators )”的电力收发器。具体来说,是分别由具备振荡电路特性的线圈组成的一对天线(照片)。直径足有数十厘米。向其中一根天线加载数 MHz 的交流电场之后,其周围产生振动磁场,通过共振现象向位于数段波长之内的另一根天线传输电力。 相隔2m 以上能量效率仍可达到 40 % 无线电力传输包括基于线圈(电感器)的电磁感应型及电磁波收发型。此次的共振型与电磁感应型相比,采用的磁场要弱得多,但是可以实现更长距离的传输。与电磁波收发型相比,共振型传输时能量逸散要少得多。论文数据显示,此次的传输效率为 40 %。